Chin. Phys. Lett.  2008, Vol. 25 Issue (5): 1595-1598    DOI:
Original Articles |
Detecting Determinism in Firing Activities of Retinal Ganglion Cells during Response to Complex Stimuli
CAI Chao-Feng;ZHANG Ying-Ying;LIU Xue;LIANG Pei-Ji;ZHANG Pu-Ming
School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240
Cite this article:   
CAI Chao-Feng, ZHANG Ying-Ying, LIU Xue et al  2008 Chin. Phys. Lett. 25 1595-1598
Download: PDF(879KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Complex stimuli are used to probe the response properties of the chicken's retinal ganglion cells (GCs). The correlation dimension method and the nonlinear forecasting method are applied to detect the determinism in the firing activities of the retinal GCs during response to complex stimuli. The inter-spike interval (ISI) series and the first difference of the ISI (DISI) series are analysed. Two conclusions are drawn. Firstly, the first difference operation of the ISI series makes it comparatively easier for determinism detection in the firing activities of retinal GCs. Secondly, the nonlinear forecasting method is more efficient and reliable than the correlation dimension method for determinism detection.
Keywords: 05.45.-a      05.45.Tp     
Received: 23 January 2008      Published: 29 April 2008
PACS:  05.45.-a (Nonlinear dynamics and chaos)  
  05.45.Tp (Time series analysis)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2008/V25/I5/01595
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
CAI Chao-Feng
ZHANG Ying-Ying
LIU Xue
LIANG Pei-Ji
ZHANG Pu-Ming
[1] Touryan J and Dan Y 2001 Curr. Opin. Neurobiol. 11 443
[2] Grassberger P and Procaccia I 1983 Phys. Rev. Lett. 50 346
[3] Sugihara G and May R M 1990 Nature 344 734
[4] Sauer T 1994 Phys. Rev. Lett. 72 3811
[5] Jeong J, Gore J C and Peterson B S 2002 Biol.Cybern. 86 335
[6] Xu J X, Gong Y F, Ren W, Hu S J and Wang F Z 1997 Phys. D 100 212
[7] Gong Y F, Xu J X, Ren W, Hu S J and Wang F Z 1998 Biol. Cybern. 78 159
[8] Chen A H, Zhou Y, Gong H Q and Liang P J 2004 BrainRes. 1017 13
[9] Chen A H, Zhou Y, Gong H Q and Liang P J 2005 Neuroreport 16 371
[10] Zhang P M, Wu J Y, Zhou Y, Liang P J and Yuan J Q 2004 J. Neurosci. Meth. 135 55
[11] Schiff S J, So P and Chang T 1996 Phys. Rev. E 54 6708
[12] Theiler J, Eubank S, Longtin A, Galdrikian B and Farmer JD 1992 Phys. D 58 77
Related articles from Frontiers Journals
[1] K. Fakhar, A. H. Kara. The Reduction of Chazy Classes and Other Third-Order Differential Equations Related to Boundary Layer Flow Models[J]. Chin. Phys. Lett., 2012, 29(6): 1595-1598
[2] ZHAI Liang-Jun, ZHENG Yu-Jun, DING Shi-Liang. Chaotic Dynamics of Triatomic Normal Mode Molecules[J]. Chin. Phys. Lett., 2012, 29(6): 1595-1598
[3] NIU Yao-Bin, WANG Zhong-Wei, DONG Si-Wei. Modified Homotopy Perturbation Method for Certain Strongly Nonlinear Oscillators[J]. Chin. Phys. Lett., 2012, 29(6): 1595-1598
[4] LIU Yan, LIU Li-Guang, WANG Hang. Study on Congestion and Bursting in Small-World Networks with Time Delay from the Viewpoint of Nonlinear Dynamics[J]. Chin. Phys. Lett., 2012, 29(6): 1595-1598
[5] Paulo C. Rech. Dynamics in the Parameter Space of a Neuron Model[J]. Chin. Phys. Lett., 2012, 29(6): 1595-1598
[6] YAN Yan-Zong, WANG Cang-Long, SHAO Zhi-Gang, YANG Lei. Amplitude Oscillations of the Resonant Phenomena in a Frenkel–Kontorova Model with an Incommensurate Structure[J]. Chin. Phys. Lett., 2012, 29(6): 1595-1598
[7] LI Jian-Ping,YU Lian-Chun,YU Mei-Chen,CHEN Yong**. Zero-Lag Synchronization in Spatiotemporal Chaotic Systems with Long Range Delay Couplings[J]. Chin. Phys. Lett., 2012, 29(5): 1595-1598
[8] JIANG Jun**. An Effective Numerical Procedure to Determine Saddle-Type Unstable Invariant Limit Sets in Nonlinear Systems[J]. Chin. Phys. Lett., 2012, 29(5): 1595-1598
[9] FANG Ci-Jun,LIU Xian-Bin**. Theoretical Analysis on the Vibrational Resonance in Two Coupled Overdamped Anharmonic Oscillators[J]. Chin. Phys. Lett., 2012, 29(5): 1595-1598
[10] WEI Du-Qu, LUO Xiao-Shu, ZHANG Bo. Noise-Induced Voltage Collapse in Power Systems[J]. Chin. Phys. Lett., 2012, 29(3): 1595-1598
[11] LI Nian-Qiang, PAN Wei, YAN Lian-Shan, LUO Bin, XU Ming-Feng, TANG Yi-Long. Quantifying Information Flow between Two Chaotic Semiconductor Lasers Using Symbolic Transfer Entropy[J]. Chin. Phys. Lett., 2012, 29(3): 1595-1598
[12] SUN Mei, CHEN Ying, CAO Long, WANG Xiao-Fang. Adaptive Third-Order Leader-Following Consensus of Nonlinear Multi-agent Systems with Perturbations[J]. Chin. Phys. Lett., 2012, 29(2): 1595-1598
[13] REN Sheng, ZHANG Jia-Zhong, LI Kai-Lun. Mechanisms for Oscillations in Volume of Single Spherical Bubble Due to Sound Excitation in Water[J]. Chin. Phys. Lett., 2012, 29(2): 1595-1598
[14] WANG Sha, YU Yong-Guang. Generalized Projective Synchronization of Fractional Order Chaotic Systems with Different Dimensions[J]. Chin. Phys. Lett., 2012, 29(2): 1595-1598
[15] HUANG Jia-Min, TAO Wei-Ming**, XU Bo-Hou. Evaluation of an Asymmetric Bistable System for Signal Detection under Lévy Stable Noise[J]. Chin. Phys. Lett., 2012, 29(1): 1595-1598
Viewed
Full text


Abstract