Chin. Phys. Lett.  2008, Vol. 25 Issue (5): 1571-1574    DOI:
Original Articles |
Inhomogeneous Vacuum: An Alternative Interpretation of Curved Spacetime
YE Xing-Hao;LIN Qiang
Department of Physics, Zhejiang University, Hangzhou 310027
Cite this article:   
YE Xing-Hao, LIN Qiang 2008 Chin. Phys. Lett. 25 1571-1574
Download: PDF(1143KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The strong similarities between the light propagation in a curved spacetime and that in a medium with graded refractive index are found. It is pointed out that a curved spacetime is equivalent to an inhomogeneous vacuum for light propagation. The corresponding graded refractive index of the vacuum in a static spherically symmetrical gravitational field is derived. This result provides a simple and convenient way to analyse the gravitational lensing in astrophysics.
Keywords: 04.62.+v      98.62.Sb     
Received: 14 January 2008      Published: 29 April 2008
PACS:  04.62.+v (Quantum fields in curved spacetime)  
  98.62.Sb (Gravitational lenses and luminous arcs)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2008/V25/I5/01571
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
YE Xing-Hao
LIN Qiang
[1] Bennett C L 2006 Nature 440 1126
[2] Bennett C L 2005 Science 307 879
[3] Amelino-Camelia G 2000 Nature 408 661
[4] Brumfiel G 2007 Nature 448 245
[5] Speake C 2007 Nature 446 31
[6] Batell B and Gherghetta T 2007 Phys. Rev. D 75 025022
[7] Majee S K et al 2007 Phys. Rev. D 75 075003
[8] Sotiriou T P 2006 Phys. Rev. D 73 063515
[9] Carroll S M 2006 Nature 440 1132
[10] Wilczek F 2005 Nature 433 239
[11] Hogan C J 2002 Science 295 2223
[12] Amelino-Camelia G 2000 Phys. Rev. D 62 024015
[13] Puthoff H E 2002 Found. Phys. 32 927
[14] Puthoff H E, Davis E W and Maccone C 2005 Gen. Rel. Grav. 37 483
[15] Ye X H and Lin Q 2008 J. Mod. Opt. (accepted) arxiv.org 0704.3485v1
[16] Ahmadi N and Nouri-Zonoz M 2006 Phys. Rev. D 74 044034
[17] Rikken G L J A and Rizzo C 2003 Phys. Rev. A 67 015801
[18] Dupays A et al 2005 Phys. Rev. Lett. 94 161101
[19] Armoni A, Gorsky A and Shifman M 2005 Phys. Rev. D 72105001
[20] Barroso A et al 2006 Phys. Rev. D 74 085016
[21] Dienes K R, Dudas E and Gherghetta T 2005 Phys. Rev. D 72 026005
[22] Gies H and Klingm\"uller K 2006 Phys. Rev. Lett. 96220401
[23] Emig T et al 2007 Phys. Rev. Lett. 99 170403
[24] Lamoreaux S K 1997 Phys. Rev. Lett. 78 5
[25] Chan H B et al 2001 Science 291 1941
[26] Eddington A S 1920 Space, Time and Gravitation(Cambridge: Cambridge University Press) p 109
[27] Wilson H A 1921 Phys. Rev. 17 54
[28] Dicke R H 1957 Rev. Mod. Phys. 29 363
[29] Felice F 1971 Gen. Rel. Grav. 2 347
[30] Nandi K K and Islam A 1995 Am. J. Phys. 63 251
[31] Evans J, Nandi K K and Islam A 1996 Am. J. Phys. 641404
[32] Evans J, Nandi K K and Islam A 1996 Gen. Rel. Grav. 28413
[33] Vlokh R 2004 Ukr. J. Phys. Opt. 5 27 Vlokh R and Kostyrko M 2005 Ukr. J. Phys. Opt. 6 120 Vlokh R and Kostyrko M 2006 Ukr. J. Phys. Opt. 7 179
[34] Winn J N, Rusin D and Kochanek C S 2004 Nature 427 613
[35] Landau L D and Lifshitz E M 1975 The Classical Theory ofFields (New York: Pergamon) p 254
[36] Amore P and Arceo S 2006 Phys. Rev. D 73 083004
[37] Virbhadra K S and Ellis G F R 2002 Phys. Rev. D 65103004
[38] Weinberg S 1972 Gravitation and Cosmology (New York:Wiley) pp 180 189 302
[39] Born M and Wolf E 1999 Principles of Optics 7th edn(Cambridge: Cambridge University Press) p 129
[40] Ye X H and Lin Q 2007 arxiv.org 0711.0633v3
Related articles from Frontiers Journals
[1] NI Jun . Unification of General Relativity with Quantum Field Theory[J]. Chin. Phys. Lett., 2011, 28(11): 1571-1574
[2] WEI Yi-Huan**, CHU Zhong-Hui . Thermodynamic Properties of a Reissner–Nordström Quintessence Black Hole[J]. Chin. Phys. Lett., 2011, 28(10): 1571-1574
[3] WEI Yi-Huan. Mechanical and Thermal Properties of the AH of FRW Universe[J]. Chin. Phys. Lett., 2010, 27(5): 1571-1574
[4] ZHAO Fan, HE Feng. Statistical Mechanical Entropy of a (4+n)-Dimensional Static Spherically Symmetric Black Hole[J]. Chin. Phys. Lett., 2010, 27(2): 1571-1574
[5] JIANG Ke-Xia, KE San-Min, PENG Dan-Tao, FENG Jun. Hawking radiation as tunneling and the unified first law of thermodynamics at the apparent horizon of the FRW universe[J]. Chin. Phys. Lett., 2009, 26(7): 1571-1574
[6] LI Cheng-Gai, YU Hong-Wei. Radiative Energy Shifts of an Atom Coupled to the Derivative of a Scalar Field near a Reflecting Boundary[J]. Chin. Phys. Lett., 2009, 26(5): 1571-1574
[7] HUANG Tie-Tie, , ZHU Zhi-Ying, ZHU Yun-Feng, YU Hong-Wei,. Spontaneous Emission of an Atom in a Spacetime with Two Parallel Reflecting Boundaries[J]. Chin. Phys. Lett., 2009, 26(4): 1571-1574
[8] HE Feng, ZHAO Fan. Statistical-Mechanical Entropy of a Black Hole with a Global Monopole to All Orders in Planck Length[J]. Chin. Phys. Lett., 2009, 26(4): 1571-1574
[9] LUO Xin-Lian. Neutrino Lensing[J]. Chin. Phys. Lett., 2009, 26(10): 1571-1574
[10] LIU Liao. Quantum de Sitter Spacetime and Energy Density Contributed from the Cosmological Constant[J]. Chin. Phys. Lett., 2008, 25(8): 1571-1574
[11] FANG Heng-Zhong, ZHU Jian-Yang. Casimir Energy in Hartle--Hawking State[J]. Chin. Phys. Lett., 2008, 25(8): 1571-1574
[12] ZHU Zhi-Ying, YU Hong-Wei. Accelerated Multi-Level Atoms in an Electromagnetic Vacuum and Fulling--Davies--Unruh Effect[J]. Chin. Phys. Lett., 2008, 25(5): 1571-1574
[13] DING Chi-Kun, JING Ji-Liang. Statistical-Mechanical Entropies of Schwarzschild Black Hole due to Arbitrary Spin Fields in Different Coordinates[J]. Chin. Phys. Lett., 2007, 24(8): 1571-1574
[14] ZHU Yun-Feng, YU Hong-Wei. Radiative Energy Shifts of an Accelerated Multilevel Atom Coupled to the Derivative of a Scalar Field[J]. Chin. Phys. Lett., 2007, 24(4): 1571-1574
[15] HE Tang-Mei, ZHANG Jing-Yi. Tunnelling Radiation of Charged and Magnetized Massive Particles from BTZ Black Holes[J]. Chin. Phys. Lett., 2007, 24(12): 1571-1574
Viewed
Full text


Abstract