Chin. Phys. Lett.  2008, Vol. 25 Issue (5): 1564-1567    DOI:
Original Articles |
Nonlinear Landau--Zener Tunnelling with Two and Three-Body Interactions
WEI Xiu-Fang1,2;TANG ong-An1;YONG Wen-Mei1;XUE Ju-Kui1
1College of Physics and Electronics Engineering, Northwest Normal University, Lanzhou 7300702Department of Physics, Lanzhou City University, Lanzhou 730070
Cite this article:   
WEI Xiu-Fang, TANG ong-An, YONG Wen-Mei et al  2008 Chin. Phys. Lett. 25 1564-1567
Download: PDF(156KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We investigate the nonlinear Landau--Zener tunnelling of Bose--Einstein condensate (BEC) in an accelerating optical lattice with two- and three-body interactions between the particles. The influence of the three-body interaction on the eigenstates and the transition probability are discussed both
analytically and numerically. The analytical eigenstates and the tunnelling probability are obtained, which are verified by numerical methods. It is shown that the eigenstates and the tunnelling probability are modified dramatically by three-body interaction.
Keywords: 03.75.Fi      67.40.Db      03.65.Ge     
Received: 12 January 2008      Published: 29 April 2008
PACS:  03.75.Fi  
  67.40.Db  
  03.65.Ge (Solutions of wave equations: bound states)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2008/V25/I5/01564
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
WEI Xiu-Fang
TANG ong-An
YONG Wen-Mei
XUE Ju-Kui
[1] Anderson B P and Kasevich M A 1998 Science 2821686
[2] Bronski J C, Carr L D, Deconinck B and Kutz J N 2001 Phys. Rev. Lett. 86 1402
[3] Choi D I and Niu Q 1999 Phys. Rev. Lett. 822022
[4] Morsch O, M"uller J H, Cristiani M, Ciampini D andArimondo E 2001 Phys. Rev. Lett. 87 140402
[5] Wu B and Niu Q 2000 Phys. Rev. A 61 023402 Wu B and Niu Q 2001 Phys. Rev. A 64 061603
[6] Wu B, Diener R B and Niu Q 2002 Phys. Rev. A 65 025601
[7] Liu J et al 2002 Phys. Rev. A 66 023404
[8] Jona L M, Morsch O, Cristiani M, Malossi N, M"uller JH, Couritade E, Anderlini M and Arimondo E 2003 Phys. Rev.Lett. 91 230406
[9] Diakonov D et al 2002 Phys. Rev. A 66 013604
[10] Mueller E J 2002 Phys. Rev. A 66 063603
[11] Fallani L, Sarlo L D, Lye J E, Modugno M, Saer R, Fort Cand Inguscio M 2004 Phys. Rev. Lett. 93 140406
[12] Wu B and Niu Q 2003 New J. Phys. 5 104
[13] Morsch O and Oberthaler M 2006 Rev. Mod. Phys. 78 179
[14] Liu B, Fu L B, Yang S P and Liu J 2007 Phys. Rev. A 75 033601
[15] Wang G F, Ye D F, Fu L B, Chen X Z and Liu J 2006 Phys. Rev. A 74 033414
[16] Zhang A X and Xue J K 2007 Phys. Rev. A 75 013624 Zhang A X and Xue J K 2008 Phys. Lett. A 3721147
[17] Xue J K, Zhang A X and Liu J 2008 Phys. Rev. A 77 013602
[18] Gammal A, Frederico T, Tomio L and Abdullaev F K 2000 Phys. Lett. A 267 305
[19] Abdullaev F K, Gammal A, Tomio L and Frederico T 2001 Phys. Rev. A. 63 043604
[20] Eric B, Hammer H W and Mehen T 2002 Phys. Rev.Lett. 89 040401
[21] Bulgac A 2002 Phys. Rev. Lett. 89 050402
[22] Kohler T 2002 Phys. Rev. Lett. 89 210404
[23] Pieri P and Strinati G C 2002 Phys. Rev. Lett. 91 030401
[24] Akhmediev N, Das M P and Vagov A V 1999 Int. J. Mod.Phys. B 13 625
[25] Niu Q and Raizen M G 1998 Phys. Rev. Lett. 803491.
Related articles from Frontiers Journals
[1] Ramesh Kumar, Fakir Chand. Energy Spectra of the Coulomb Perturbed Potential in N-Dimensional Hilbert Space[J]. Chin. Phys. Lett., 2012, 29(6): 1564-1567
[2] Akpan N. Ikot. Solutions to the Klein–Gordon Equation with Equal Scalar and Vector Modified Hylleraas Plus Exponential Rosen Morse Potentials[J]. Chin. Phys. Lett., 2012, 29(6): 1564-1567
[3] NIU Yao-Bin, WANG Zhong-Wei, DONG Si-Wei. Modified Homotopy Perturbation Method for Certain Strongly Nonlinear Oscillators[J]. Chin. Phys. Lett., 2012, 29(6): 1564-1567
[4] A. I. Arbab. Transport Properties of the Universal Quantum Equation[J]. Chin. Phys. Lett., 2012, 29(3): 1564-1567
[5] WANG Jun-Min. Periodic Wave Solutions to a (3+1)-Dimensional Soliton Equation[J]. Chin. Phys. Lett., 2012, 29(2): 1564-1567
[6] Hassanabadi Hassan, Yazarloo Bentol Hoda, LU Liang-Liang. Approximate Analytical Solutions to the Generalized Pöschl–Teller Potential in D Dimensions[J]. Chin. Phys. Lett., 2012, 29(2): 1564-1567
[7] CHEN Qing-Hu, **, LI Lei, LIU Tao, WANG Ke-Lin. The Spectrum in Qubit-Oscillator Systems in the Ultrastrong Coupling Regime[J]. Chin. Phys. Lett., 2012, 29(1): 1564-1567
[8] WANG Jun-Min**, YANG Xiao . Theta-function Solutions to the (2+1)-Dimensional Breaking Soliton Equation[J]. Chin. Phys. Lett., 2011, 28(9): 1564-1567
[9] M. R. Setare, *, D. Jahani, ** . Quantum Hall Effect and Different Zero-Energy Modes of Graphene[J]. Chin. Phys. Lett., 2011, 28(9): 1564-1567
[10] ZHANG Min-Cang**, HUANG-FU Guo-Qing . Analytical Approximation to the -Wave Solutions of the Hulthén Potential in Tridiagonal Representation[J]. Chin. Phys. Lett., 2011, 28(5): 1564-1567
[11] O. Bayrak**, A. Soylu, I. Boztosun . Effect of the Velocity-Dependent Potentials on the Bound State Energy Eigenvalues[J]. Chin. Phys. Lett., 2011, 28(4): 1564-1567
[12] WANG Jun-Min . Traveling Wave Evolutions of a Cosh-Gaussian Laser Beam in Both Kerr and Cubic Quintic Nonlinear Media Based on Mathematica[J]. Chin. Phys. Lett., 2011, 28(3): 1564-1567
[13] Altu&#, , Arda, Ramazan Sever. Effective Mass Schrödinger Equation via Point Canonical Transformation[J]. Chin. Phys. Lett., 2010, 27(7): 1564-1567
[14] TIAN Gui-Hua, ZHONG Shu-Quan. Ground State Eigenfunction of Spheroidal Wave Functions[J]. Chin. Phys. Lett., 2010, 27(4): 1564-1567
[15] D. Agboola. Solutions to the Modified Pöschl-Teller Potential in D-Dimensions[J]. Chin. Phys. Lett., 2010, 27(4): 1564-1567
Viewed
Full text


Abstract