Chin. Phys. Lett.  2008, Vol. 25 Issue (5): 1561-1563    DOI:
Original Articles |
A Special Eavesdropping on One-Sender Versus N-Receiver QSDC Protocol
GAO Fei1,2;LIN Song1,2;WEN Qiao-Yan1,2;ZHU Fu-Chen3
1State key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, Beijing 1008762School of Science, Beijing University of Posts and Telecommunications, Beijing 1008763National Laboratory for Modern Communications, PO Box 810, Chengdu610041
Cite this article:   
GAO Fei, LIN Song, WEN Qiao-Yan et al  2008 Chin. Phys. Lett. 25 1561-1563
Download: PDF(141KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We analyse the security of a quantum secure direct communication (QSDC)
protocol and find that an eavesdropper can utilize a special property of GHZ states to elicit all or part of the transmitted secrets without being detected. The particular attack strategy is presented in detail. We give an improved version of this protocol so that it can resist this attack.
Keywords: 03.67.Hk      03.65.Ud     
Received: 29 January 2008      Published: 29 April 2008
PACS:  03.67.Hk (Quantum communication)  
  03.65.Ud (Entanglement and quantum nonlocality)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2008/V25/I5/01561
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
GAO Fei
LIN Song
WEN Qiao-Yan
ZHU Fu-Chen
[1] Gisin N, Ribordy G, Tittel W et al 2002 Rev. Mod. Phys. 74 145
[2] Bennett C H and Brassard G 1984 Proceedings of IEEEInternational Conference on Computers, Systems and Signal Processing(Bangalore, India, 1984) (New York: IEEE) p 175
[3] Ekert A K 1991 Phys. Rev. Lett. 67 661
[4] Bennett C H 1992 Phys. Rev. Lett. 68 3121
[5] Bostr\"om K and Felbinger T 2002 Phys. Rev. Lett. 89 187902
[6] Deng F, Long G and Liu X 2003 Phys. Rev. A 68 042317
[7] Deng F and Long G 2004 Phys. Rev. A 69 052319
[8] Lucamarini M and Mancini S 2005 Phys. Rev. Lett. 94 140501
[9] Deng F, Li X, Li C et al 2005 Phys. Lett. A 359359
[10] Zhang Y, Li C and Guo G 2001 Phys. Rev. A 63 036301
[11] W\'{ojcik A 2003 Phys. Rev. Lett. 90 157901
[12] W\'{ojcik A 2005 Phys. Rev. A 71 016301
[13] Gao F, Guo F, Wen Q et al 2005 Phys. Rev. A 72036302
[14] Gao F, Guo F, Wen Q et al 2005 Phys. Rev. A 72066301
[15] Deng F, Li X, Zhou H et al 2005 Phys. Rev. A 72044302
[16] Lo H K and Ko T M 2005 Quantum Inf. Comput. 5 40
[17] Man Z, Zhang Z, Li Y 2005 Chin. Phys. Lett. 22 22
[18] Qin S, Gao F, Wen Q et al 2006 Phys. Lett. A 357 101
[19] Song J and Zhang S 2006 Chin. Phys. Lett. 23 1383
[20] Gao F, Qin S, Wen Q, et al 2007 Quantum Inf. Comput. 7 329
[21] Man Z and Xia Y 2007 Chin. Phys. Lett. 24 15
[22] Man Z and Xia Y 2006 Chin. Phys. Lett. 23 1973
[23] Gao F, Wen Q and Zhu F 2007 Phys. Lett. A 360 748
[24] Song J and Zhang S 2007 Phys. Lett. A 360 746
Related articles from Frontiers Journals
[1] 天琦 窦,吉鹏 王,振华 李,文秀 屈,舜禹 杨,钟齐 孙,芬 周,雁鑫 韩,雨晴 黄,海强 马. A Fully Symmetrical Quantum Key Distribution System Capable of Preparing and Measuring Quantum States*

Supported by the Fundamental Research Funds for the Central Universities (Grant No. 2019XD-A02), and the State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications (Grant No. IPO2019ZT06).

[J]. Chin. Phys. Lett., 2020, 37(11): 1561-1563
[2] GUO Yu, LUO Xiao-Bing. Quantum Teleportation between Two Distant Bose–Einstein Condensates[J]. Chin. Phys. Lett., 2012, 29(6): 1561-1563
[3] REN Jie, WU Yin-Zhong, ZHU Shi-Qun. Quantum Discord and Entanglement in Heisenberg XXZ Spin Chain after Quenches[J]. Chin. Phys. Lett., 2012, 29(6): 1561-1563
[4] Chang Ho Hong,Jin O Heo,Jong in Lim,Hyung jin Yang,**. A Quantum Network System of QSS-QDC Using χ-Type Entangled States[J]. Chin. Phys. Lett., 2012, 29(5): 1561-1563
[5] SHAN Chuan-Jia,**,CAO Shuai,XUE Zheng-Yuan,ZHU Shi-Liang. Anomalous Temperature Effects of the Entanglement of Two Coupled Qubits in Independent Environments[J]. Chin. Phys. Lett., 2012, 29(4): 1561-1563
[6] LI Hong-Rong**,ZHANG Pei,GAO Hong,BI Wen-Ting,ALAMRI M. D.,LI Fu-Li. Non-Equilibrium Quantum Entanglement in Biological Systems[J]. Chin. Phys. Lett., 2012, 29(4): 1561-1563
[7] GE Rong-Chun, LI Chuan-Feng, GUO Guang-Can. Spin Dynamics in the XY Model[J]. Chin. Phys. Lett., 2012, 29(3): 1561-1563
[8] M. Ramzan. Decoherence and Multipartite Entanglement of Non-Inertial Observers[J]. Chin. Phys. Lett., 2012, 29(2): 1561-1563
[9] Piotr Zawadzki**. New View of Ping-Pong Protocol Security[J]. Chin. Phys. Lett., 2012, 29(1): 1561-1563
[10] LI Jun-Gang, **, ZOU Jian, **, XU Bao-Ming, SHAO Bin, . Quantum Correlation Generation in a Damped Cavity[J]. Chin. Phys. Lett., 2011, 28(9): 1561-1563
[11] ZHANG Ai-Ping**, QIANG Wen-Chao, LING Ya-Wen, XIN Hong, YANG Yong-Ming . Geometric Phase for a Qutrit-Qubit Mixed-Spin System[J]. Chin. Phys. Lett., 2011, 28(8): 1561-1563
[12] ZHANG Peng**, LI Chao, . Feasibility of Double-Click Attack on a Passive Detection Quantum Key Distribution System[J]. Chin. Phys. Lett., 2011, 28(7): 1561-1563
[13] YAN Hui, **, ZHU Shi-Liang, DU Sheng-Wang . Efficient Phase-Encoding Quantum Key Generation with Narrow-Band Single Photons[J]. Chin. Phys. Lett., 2011, 28(7): 1561-1563
[14] WANG Xiao-Bo, WANG Jing-Jing, HE Bo, XIAO Lian-Tuan**, JIA Suo-Tang . Photon Counting Optical Time Domain Reflectometry Applying a Single Photon Modulation Technique[J]. Chin. Phys. Lett., 2011, 28(7): 1561-1563
[15] QIAN Yi, XU Jing-Bo** . Quantum Discord Dynamics of Two Atoms Interacting with Two Quantized Field Modes through a Raman Interaction with Phase Decoherence[J]. Chin. Phys. Lett., 2011, 28(7): 1561-1563
Viewed
Full text


Abstract