Chin. Phys. Lett.  2008, Vol. 25 Issue (5): 1545-1548    DOI:
Original Articles |
Solution of the Fermi--Ulam Model in the Case of Periodic Perturbation
LI Chao1,2;WU Jun-Fang1;XU Wen-Cheng2
1College of Physical Science and Technology, SouthChina University of Technology, Guangzhou 5106402School for Information and Optoelectronic Scienceand Engineering, South China Normal University, Guangzhou 510631
Cite this article:   
LI Chao, WU Jun-Fang, XU Wen-Cheng 2008 Chin. Phys. Lett. 25 1545-1548
Download: PDF(175KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We discuss the evolution of the state and the average energy of the Fermi--Ulam model in the case of periodic perturbation. By a perturbation technique, the time-dependent Schrodinger equation is solved and it is found that the particle will continuously absorb or radiate energy if the frequency of the oscillating wall meets the resonance condition. Usually, these two states cannot exist together at a certain frequency. However, there is an exception if the frequency is at some special values. We find these values and reveal that the energy for transmission has the minimum equivalent unit, which is in the form of a harmonic oscillator.
Keywords: 03.65.Ge     
Received: 30 January 2008      Published: 29 April 2008
PACS:  03.65.Ge (Solutions of wave equations: bound states)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2008/V25/I5/01545
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LI Chao
WU Jun-Fang
XU Wen-Cheng
[1] Fermi E 1949 Phys. Rev. 75 1169
[2] Ulam S M 1961 Proc. 4th Berkeley Symp. Math. Stat. Prob.
[3] Blandford R E D 1987 Phys. Rep. 154 1
[4] Leonel E D, McClintock P V E and Silva J K L 2004 Phys.Rev. Lett. 93 029901
[5] Karlis A K, Papachristou P K, Diakonos K, Constantoudis V andSchmelcher P 2007 Phys. Rev. E 76 016214
[6] Leonel E D and Carvalho R E 2007 Phys. Lett. A 364 475
[7] Abal G, Romanelli A, Schifino A C S, Siri R and Donangelo R1999 Physica A 272 87
[8] Ladeira D G and Silva J K L 2006 Phys. Rev. E 73026201
[9]Saif F and Rehman I 2007 Phys. Rev. A 75 (4)
[10] Fosco C D, Lombardo F C and Mazzitelli F D 2007 Phys.Rev. D 76 No. 085007
[11] Bose S, Jacobs K and Knight P L 1997 Phys. Rev. A 56 4175
[12] Liu K J, He L and Zhou G L 2001 Chin. Phys. 10 1110
[13] Li L and Li B Z 2002 Chin. Phys. Lett. 19 1061
[14] Chen W Z and Wei R J 1999 Chin. Phys. Lett. 16 767
[15] Li L and Li B Z 2001 Phys. Lett. A 291 190
[16] Doescher S W and Rice M H 1969 Am. J. Phys. 37 1246
[17] Makowski A J 1992 Math. Gen. 25 3419
[18] Makowski A J and Peplowski P 1992 Phys. Lett. A 163 142
[19] Makowski A J and Dembinski S T 1991 Phys. Lett. A 154 172
Related articles from Frontiers Journals
[1] Ramesh Kumar, Fakir Chand. Energy Spectra of the Coulomb Perturbed Potential in N-Dimensional Hilbert Space[J]. Chin. Phys. Lett., 2012, 29(6): 1545-1548
[2] Akpan N. Ikot. Solutions to the Klein–Gordon Equation with Equal Scalar and Vector Modified Hylleraas Plus Exponential Rosen Morse Potentials[J]. Chin. Phys. Lett., 2012, 29(6): 1545-1548
[3] NIU Yao-Bin, WANG Zhong-Wei, DONG Si-Wei. Modified Homotopy Perturbation Method for Certain Strongly Nonlinear Oscillators[J]. Chin. Phys. Lett., 2012, 29(6): 1545-1548
[4] A. I. Arbab. Transport Properties of the Universal Quantum Equation[J]. Chin. Phys. Lett., 2012, 29(3): 1545-1548
[5] WANG Jun-Min. Periodic Wave Solutions to a (3+1)-Dimensional Soliton Equation[J]. Chin. Phys. Lett., 2012, 29(2): 1545-1548
[6] Hassanabadi Hassan, Yazarloo Bentol Hoda, LU Liang-Liang. Approximate Analytical Solutions to the Generalized Pöschl–Teller Potential in D Dimensions[J]. Chin. Phys. Lett., 2012, 29(2): 1545-1548
[7] CHEN Qing-Hu, **, LI Lei, LIU Tao, WANG Ke-Lin. The Spectrum in Qubit-Oscillator Systems in the Ultrastrong Coupling Regime[J]. Chin. Phys. Lett., 2012, 29(1): 1545-1548
[8] WANG Jun-Min**, YANG Xiao . Theta-function Solutions to the (2+1)-Dimensional Breaking Soliton Equation[J]. Chin. Phys. Lett., 2011, 28(9): 1545-1548
[9] M. R. Setare, *, D. Jahani, ** . Quantum Hall Effect and Different Zero-Energy Modes of Graphene[J]. Chin. Phys. Lett., 2011, 28(9): 1545-1548
[10] ZHANG Min-Cang**, HUANG-FU Guo-Qing . Analytical Approximation to the -Wave Solutions of the Hulthén Potential in Tridiagonal Representation[J]. Chin. Phys. Lett., 2011, 28(5): 1545-1548
[11] O. Bayrak**, A. Soylu, I. Boztosun . Effect of the Velocity-Dependent Potentials on the Bound State Energy Eigenvalues[J]. Chin. Phys. Lett., 2011, 28(4): 1545-1548
[12] WANG Jun-Min . Traveling Wave Evolutions of a Cosh-Gaussian Laser Beam in Both Kerr and Cubic Quintic Nonlinear Media Based on Mathematica[J]. Chin. Phys. Lett., 2011, 28(3): 1545-1548
[13] Altu&#, , Arda, Ramazan Sever. Effective Mass Schrödinger Equation via Point Canonical Transformation[J]. Chin. Phys. Lett., 2010, 27(7): 1545-1548
[14] TIAN Gui-Hua, ZHONG Shu-Quan. Ground State Eigenfunction of Spheroidal Wave Functions[J]. Chin. Phys. Lett., 2010, 27(4): 1545-1548
[15] D. Agboola. Solutions to the Modified Pöschl-Teller Potential in D-Dimensions[J]. Chin. Phys. Lett., 2010, 27(4): 1545-1548
Viewed
Full text


Abstract