Chin. Phys. Lett.  2008, Vol. 25 Issue (5): 1534-1537    DOI:
Original Articles |
Topological Quantization of Instantons in SU(2) Yang--Mills Theory
ZHONG Wo-Jun1;DUAN Yi-Shi2
1Department of Physics and Electronic Information, Gannan Teacher's College, Ganzhou 3410002Institute of Theoretical Physics, Lanzhou University, Lanzhou 730000
Cite this article:   
ZHONG Wo-Jun, DUAN Yi-Shi 2008 Chin. Phys. Lett. 25 1534-1537
Download: PDF(119KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract By decomposing SU(2) gauge potential in four-dimensional Euclidean SU(2) Yang--Mills theory in a new way, we find that the instanton number related to the isospin defects of a doublet order parameter can be topologically quantized by the Hopf index and Brouwer degree. It is also shown that the instanton number is just the sum of the topological charges of the isospin
defects in the non-trivial sector of Yang--Mills theory.
Keywords: 02.40.Pc      11.15.-q     
Received: 03 September 2007      Published: 29 April 2008
PACS:  02.40.Pc (General topology)  
  11.15.-q (Gauge field theories)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2008/V25/I5/01534
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHONG Wo-Jun
DUAN Yi-Shi
[1]Belavin A, Polyakov A, Shvarts A and Tryupkin Yu 1975 Phys. Lett. B 59 85
[2]Yang K Y 1994 Phys. Rev. D 49 5491
[3]Fukushima M, Suganuma H and Toki H 1999 Phys. Rev. D 60 094504
[4] Cavaglia M, de Alfaro V and de Felice F 1994 Phys.Rev. D 49 6493
[5] $'$t Hooft G 1976 Phys. Rev. Lett. 37 8 $'$t Hooft G 1976 Phys. Rev. D 14 3432
[6]Shuryak E and Verbaarschot J 1990 Nucl. Phys. B 341 1
[7]Diakonov D hep-ph/9602375
[8] Schafer T and Shuryak E 1998 Rev. Mod. Phys. 70 323
[9] Rubakov V A 1985 Nucl. Phys. B 256 509
[10]Cho Y M hep-th/9906198
[11]Faddeev L and Niemi A J hep-th/9907180
[12]Faddeev L and Niemi A J 1999 Phys. Rev. Lett. 82 1624
[13] Ford C, Tok T and Wipf A 1999 Phys. Lett. B 456 155
[14] $'$t Hooft G 1979 Nucl. Phys. B 153 141
[15] Polyakov A 1977 Nucl. Phys. B 120 429
[16]Lee K 1991 Phys. Rev. Lett. 66 553
[17] Dunne G V hep-th/9902115
[18] Nash S and Sen S 1983 Topology and Geometry ofPhysicists (London: Academic)
[19] Chern S S and Simons J 1974 Ann. Math. 99 48
[20] Goursat E 1904 A Course in Mathematical Analysistranslated by Hedrick E R (New York: Dover) vol I
[21] Schouten J A 1951 Tensor Analysis for Physicists(Oxford: Clarendon)
[22] Hopf H 1929 Math. Ann. 96 209
Related articles from Frontiers Journals
[1] Ciprian Dariescu, Marina-Aura Dariescu**. Chiral Fermion Conductivity in Graphene-Like Samples Subjected to Orthogonal Fields[J]. Chin. Phys. Lett., 2012, 29(1): 1534-1537
[2] ZHANG Xiu-Ming, DUAN Yi-Shi. The Topological Structure of the SU(2) Chern-Simons Topological Current in the Four-Dimensional Quantum Hall Effect[J]. Chin. Phys. Lett., 2010, 27(7): 1534-1537
[3] WU Zhao-Yan, FU Xin-Chu. Topology Identification of General Dynamical Network with Distributed Time Delays[J]. Chin. Phys. Lett., 2009, 26(7): 1534-1537
[4] ZET Gheorghe, MANTA Vasile, POPA Camelia. Gauge Model Based on Group G×SU(2)[J]. Chin. Phys. Lett., 2008, 25(2): 1534-1537
[5] LIANG Wen-Feng, WU Ming, LIU Hui, CHEN Xiang-Song. Gauge-Invariant Spin and Orbital Angular Momentum of Laguerre--Gaussian Laser[J]. Chin. Phys. Lett., 2008, 25(12): 1534-1537
[6] KE San-Min, SHI Kang-Jie, WANG Chun, WU Sheng. Flat Currents and Solutions of Sigma Model on Supercoset Targets with Z2m Grading[J]. Chin. Phys. Lett., 2007, 24(12): 1534-1537
[7] DUAN Yi-Shi, WU Shao-Feng. Regular Magnetic Monopole from Generalized ’t Hooft Tensor[J]. Chin. Phys. Lett., 2006, 23(11): 1534-1537
[8] DUAN Yi-Shi, ZHANG Xiu-Ming, TIAN Miao. The Branch Process of Skyrmions in the Fractional Quantum Hall Effect[J]. Chin. Phys. Lett., 2005, 22(8): 1534-1537
[9] DUAN Yi-Shi, YANG Jie. The Topological Inner Structure of Chern--Simons Tensor Current and the World-Sheet of Strings[J]. Chin. Phys. Lett., 2005, 22(5): 1534-1537
[10] ZHANG Yun, JING Ji-Liang. Dirac Quasinormal Modes of the Schwarzschild--anti-de Sitter Black Hole with a Global Monopole[J]. Chin. Phys. Lett., 2005, 22(10): 1534-1537
[11] DUAN Yi-Shi, REN Ji-Rong, YANG Jie. Cosmic Strings and Quintessence[J]. Chin. Phys. Lett., 2003, 20(12): 1534-1537
[12] Integer and Half-Integer Quantization Conditions in Quantum Mechanics. Integer and Half-Integer Quantization Conditions in Quantum Mechanics[J]. Chin. Phys. Lett., 2001, 18(4): 1534-1537
[13] ZHAO Shucheng. MASSIVE ABELIAN GAUGE FIELD THEORY AND INTERACTION BETWEEN BARYON CHARGES AND CURRENTS[J]. Chin. Phys. Lett., 1990, 7(3): 1534-1537
Viewed
Full text


Abstract