Chin. Phys. Lett.  2008, Vol. 25 Issue (5): 1531-1533    DOI:
Original Articles |
Exact Periodic Solitary-Wave Solution for KdV Equation
DAI Zheng-De1,2;LIU Zhen-Jiang3;LI Dong-Long2
1School of Mathematics and Physics, Yunnan University, Kunming 6500912Department of Information and Computing Science, Guangxi Institute of Technology, Liuzhou 5450053Department of Mathematics, Qujing Normal University, Qujing 655000
Cite this article:   
DAI Zheng-De, LIU Zhen-Jiang, LI Dong-Long 2008 Chin. Phys. Lett. 25 1531-1533
Download: PDF(608KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A new technique, the extended homoclinic test technique, is proposed to seek periodic solitary wave solutions of integrable systems. Exact periodic solitary-wave solutions for classical KdV equation are obtained using this
technique. This result shows that it is entirely possible for the (1+1)-dimensional integrable equation that there exists a periodic solitary-wave.
Keywords: 02.30.Jr      05.45.Yv      47.11.+j     
Received: 02 January 2008      Published: 29 April 2008
PACS:  02.30.Jr (Partial differential equations)  
  05.45.Yv (Solitons)  
  47.11.+j  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2008/V25/I5/01531
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
DAI Zheng-De
LIU Zhen-Jiang
LI Dong-Long
[1] Ablowitz M J and Clarkson P A 1991 Solitons,Nonlinear Evolution Equations and Inverse Scattering (Cambridge:Cambridge University Press)
[2] Gardner C S, Greene J M and Kruskal M D 1967 Phys. Rev.Lett. 19 1095
[3]Hirota R 1971 Phys. Rev. Lett. 27 1192
[4]Miurs M R 1978 Backlund Transformation (Berlin: Springer)
[5]Weiss J, Tabor M and Garnevale G 1983 J. Math. Phys. 24 522
[6]Yan C 1996, Phys. Lett. A 224 77
[7]Wang M L 1996 Phys. Lett. A 213 279
[8]El-Shabed M 2005 Int. J. Nonlinear Sci. Numer. Simul. 6 163
[9]He J H 2005 Int. J. Nonlinear Sci. Numer. Simul. 6 207
[10]He J H 2006 Int. Modern Phys. B 20 1141
[11]He J H 1999 Int. J. Nonlinear Mech. 34 699
[12]He J H 2004 Chaos Solitons Frac. 19 847
[13]Abassy T A, El-Tawil M A and Saleh H K 2004 Int. J. Nonlinear Sci. Numer. Simul. 5 327
[14]Zayad E M E, Zedan H A and Gepreel K A 2004 Int. J. Nonlinear Sci. Numer. Simul. 5 221
[15]Zhang S and Xia T C 2006 Appl. Math. Comput. 181 319
[16]HumJ Q 2005 Chaos Solitons Fractals . 23 391
[17]Zhang S and Xia T C 2006 Phys. Lett. A 356 119
[18]Liu S K, Fu Z T and Zhao Q 2001 Phys. Lett. A 289 69
[19]Zhao X Q, Zhi H Y and Zhang H Q 2006 Chaos SolitonsFractals 28 112
[20]Liu J B and Yang K Q 2004 Chaos Solitons Frac. 22 111
[21]Zhang S 2007 Phys. Lett. A 365 448
[22]Shek E C M and Chow K W 2008 Chaos Solitons Fractals 36 296
[23]He J H and Wu X H 2006 Chaos Solitons Fractals 30 700
[24]Zhang S 2008 Appl. Math. Comput. 197 128
[25]Dai Z D, Huang J, Jiang M R and Wang S H 2005 Chaos Solitons Frac. 26 1189
[26]Dai Z D, Jiang M R, Dai Q Y and Li S L 2006 Chin. Phys.Lett. 23 1065
[27]Dai Z D, Huang J and Jiang M R 2006 Phys. Lett. A 352 411
[28]Dai Z D, Li S L, Li D L and Zhu A J 2007 Chin. Phys.Lett. 24 1429
Related articles from Frontiers Journals
[1] E. M. E. Zayed, S. A. Hoda Ibrahim. Exact Solutions of Nonlinear Evolution Equations in Mathematical Physics Using the Modified Simple Equation Method[J]. Chin. Phys. Lett., 2012, 29(6): 1531-1533
[2] WU Yong-Qi. Exact Solutions to a Toda-Like Lattice Equation in 2+1 Dimensions[J]. Chin. Phys. Lett., 2012, 29(6): 1531-1533
[3] HE Jing-Song, WANG You-Ying, LI Lin-Jing. Non-Rational Rogue Waves Induced by Inhomogeneity[J]. Chin. Phys. Lett., 2012, 29(6): 1531-1533
[4] YANG Zheng-Ping, ZHONG Wei-Ping. Self-Trapping of Three-Dimensional Spatiotemporal Solitary Waves in Self-Focusing Kerr Media[J]. Chin. Phys. Lett., 2012, 29(6): 1531-1533
[5] CUI Kai. New Wronskian Form of the N-Soliton Solution to a (2+1)-Dimensional Breaking Soliton Equation[J]. Chin. Phys. Lett., 2012, 29(6): 1531-1533
[6] S. Hussain. The Effect of Spectral Index Parameter κ on Obliquely Propagating Solitary Wave Structures in Magneto-Rotating Plasmas[J]. Chin. Phys. Lett., 2012, 29(6): 1531-1533
[7] CAO Ce-Wen**,ZHANG Guang-Yao. Lax Pairs for Discrete Integrable Equations via Darboux Transformations[J]. Chin. Phys. Lett., 2012, 29(5): 1531-1533
[8] YAN Jia-Ren**,ZHOU Jie,AO Sheng-Mei. The Dynamics of a Bright–Bright Vector Soliton in Bose–Einstein Condensation[J]. Chin. Phys. Lett., 2012, 29(5): 1531-1533
[9] DAI Zheng-De**, WU Feng-Xia, LIU Jun and MU Gui. New Mechanical Feature of Two-Solitary Wave to the KdV Equation[J]. Chin. Phys. Lett., 2012, 29(4): 1531-1533
[10] Mohammad Najafi**,Maliheh Najafi,M. T. Darvishi. New Exact Solutions to the (2+1)-Dimensional Ablowitz–Kaup–Newell–Segur Equation: Modification of the Extended Homoclinic Test Approach[J]. Chin. Phys. Lett., 2012, 29(4): 1531-1533
[11] SHI Lei**,XIONG Wei,GAO Shu-Sheng. The Effect of Gas Leaks on Underground Gas Storage Performance During Development and Operation[J]. Chin. Phys. Lett., 2012, 29(4): 1531-1533
[12] S. Karimi Vanani, F. Soleymani. Application of the Homotopy Perturbation Method to the Burgers Equation with Delay[J]. Chin. Phys. Lett., 2012, 29(3): 1531-1533
[13] Saliou Youssoufa, Victor K. Kuetche, Timoleon C. Kofane. Generation of a New Coupled Ultra-Short Pulse System from a Group Theoretical Viewpoint: the Cartan Ehresman Connection[J]. Chin. Phys. Lett., 2012, 29(2): 1531-1533
[14] Hermann T. Tchokouansi, Victor K. Kuetche, Abbagari Souleymanou, Thomas B. Bouetou, Timoleon C. Kofane. Generating a New Higher-Dimensional Ultra-Short Pulse System: Lie-Algebra Valued Connection and Hidden Structural Symmetries[J]. Chin. Phys. Lett., 2012, 29(2): 1531-1533
[15] LIU Ping**, FU Pei-Kai. Note on the Lax Pair of a Coupled Hybrid System[J]. Chin. Phys. Lett., 2012, 29(1): 1531-1533
Viewed
Full text


Abstract