Original Articles |
|
|
|
|
Exact Periodic Solitary-Wave Solution for KdV Equation |
DAI Zheng-De1,2;LIU Zhen-Jiang3;LI Dong-Long2 |
1School of Mathematics and Physics, Yunnan University, Kunming 6500912Department of Information and Computing Science, Guangxi Institute of Technology, Liuzhou 5450053Department of Mathematics, Qujing Normal University, Qujing 655000 |
|
Cite this article: |
DAI Zheng-De, LIU Zhen-Jiang, LI Dong-Long 2008 Chin. Phys. Lett. 25 1531-1533 |
|
|
Abstract A new technique, the extended homoclinic test technique, is proposed to seek periodic solitary wave solutions of integrable systems. Exact periodic solitary-wave solutions for classical KdV equation are obtained using this technique. This result shows that it is entirely possible for the (1+1)-dimensional integrable equation that there exists a periodic solitary-wave.
|
Keywords:
02.30.Jr
05.45.Yv
47.11.+j
|
|
Received: 02 January 2008
Published: 29 April 2008
|
|
|
|
|
|
[1] Ablowitz M J and Clarkson P A 1991 Solitons,Nonlinear Evolution Equations and Inverse Scattering (Cambridge:Cambridge University Press) [2] Gardner C S, Greene J M and Kruskal M D 1967 Phys. Rev.Lett. 19 1095 [3]Hirota R 1971 Phys. Rev. Lett. 27 1192 [4]Miurs M R 1978 Backlund Transformation (Berlin: Springer) [5]Weiss J, Tabor M and Garnevale G 1983 J. Math. Phys. 24 522 [6]Yan C 1996, Phys. Lett. A 224 77 [7]Wang M L 1996 Phys. Lett. A 213 279 [8]El-Shabed M 2005 Int. J. Nonlinear Sci. Numer. Simul. 6 163 [9]He J H 2005 Int. J. Nonlinear Sci. Numer. Simul. 6 207 [10]He J H 2006 Int. Modern Phys. B 20 1141 [11]He J H 1999 Int. J. Nonlinear Mech. 34 699 [12]He J H 2004 Chaos Solitons Frac. 19 847 [13]Abassy T A, El-Tawil M A and Saleh H K 2004 Int. J. Nonlinear Sci. Numer. Simul. 5 327 [14]Zayad E M E, Zedan H A and Gepreel K A 2004 Int. J. Nonlinear Sci. Numer. Simul. 5 221 [15]Zhang S and Xia T C 2006 Appl. Math. Comput. 181 319 [16]HumJ Q 2005 Chaos Solitons Fractals . 23 391 [17]Zhang S and Xia T C 2006 Phys. Lett. A 356 119 [18]Liu S K, Fu Z T and Zhao Q 2001 Phys. Lett. A 289 69 [19]Zhao X Q, Zhi H Y and Zhang H Q 2006 Chaos SolitonsFractals 28 112 [20]Liu J B and Yang K Q 2004 Chaos Solitons Frac. 22 111 [21]Zhang S 2007 Phys. Lett. A 365 448 [22]Shek E C M and Chow K W 2008 Chaos Solitons Fractals 36 296 [23]He J H and Wu X H 2006 Chaos Solitons Fractals 30 700 [24]Zhang S 2008 Appl. Math. Comput. 197 128 [25]Dai Z D, Huang J, Jiang M R and Wang S H 2005 Chaos Solitons Frac. 26 1189 [26]Dai Z D, Jiang M R, Dai Q Y and Li S L 2006 Chin. Phys.Lett. 23 1065 [27]Dai Z D, Huang J and Jiang M R 2006 Phys. Lett. A 352 411 [28]Dai Z D, Li S L, Li D L and Zhu A J 2007 Chin. Phys.Lett. 24 1429 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|