Chin. Phys. Lett.  2008, Vol. 25 Issue (5): 1523-1526    DOI:
Original Articles |
Conformal Invariance and Conserved Quantities of General Holonomic Systems
CAI Jian-Le
College of Science, Hangzhou Normal University, Hangzhou 310018
Cite this article:   
CAI Jian-Le 2008 Chin. Phys. Lett. 25 1523-1526
Download: PDF(148KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Conformal invariance and conserved quantities of general holonomic systems are studied. A one-parameter infinitesimal transformation group and its infinitesimal transformation vector of generators are described. The definition of conformal invariance and determining equation for the system are provided. The conformal factor expression is deduced from conformal invariance and Lie symmetry. The necessary and sufficient condition, that conformal invariance of the system would be Lie symmetry, is obtained under the infinitesimal one-parameter transformation group. The corresponding conserved quantity is derived with the aid of a structure equation. Lastly, an example is given to demonstrate the application of the result.
Keywords: 02.20.Sv      11.30.-j     
Received: 12 February 2008      Published: 29 April 2008
PACS:  02.20.Sv (Lie algebras of Lie groups)  
  11.30.-j (Symmetry and conservation laws)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2008/V25/I5/01523
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
CAI Jian-Le
[1] Noether A E 1918 Nachr. Akad. Math. 2 235
[2] Djukie D S and Vujanovie B D 1975 Acta Mech. 2317
[3] Mei F X 1999 Applications of Lie Groups and Lie Algebrasto Constrained Mechanical Systems (Beijing: Science) (in Chinese)
[4] Zhao Y Y and Mei F X 1999 Symmetries and Invariantsof Mechanical Systems (Beijing: Science) (in Chinese)
[5] Mei F X 2000 J. Beijing Inst. Tech. 9 120(in Chinese)
[6] Mei F X 2001 Chin. Phys. 10 177
[7] Mei F X and Chen X W 2001 J. Beijing Inst. Tech. 10 138 (in Chinese)
[8] Luo S K 2003 Acta Phys. Sin. 52 2941 (in Chinese)
[9] Fang J H 2003 Commun. Theor. Phys. 40 269
[10] Mei F X 2004 Symmetries and Conserved Quantities ofConstrained Mechanical Systems (Beijing: Beijing Institute ofTechnology) (in Chinese)
[11] Luo S K 2002 Chin. Phys. Lett. 19 449
[12] Luo S K 2003 Chin. Phys. lett. 20 597
[13] Luo S K 2003 Acta Phys. Sin. 52 1 (in Chinese)
[14] Zhang Y 2005 Acta Phys. Sin. 54 2980 (in Chinese)
[15] Mei F X 2004 J. Dynamics and Control 2 28 (in Chinese)
[16] Xu X J and Mei F X 2005 Acta Phys. Sin. 545521 (in Chinese)
[17] Zhang Y 2005 Acta Phys. Sin. 54 4488(in Chinese)
[18] Fang J H and Li H 2004 Acta Phys. Sin. 53 2807(in Chinese)
[19] Zheng S W, Xie J F and Jia L Q 2006 Chin. Phys. Lett. 23 2924
[20] Zheng S W, Xie J F and Zhang Q H 2007 Chin. Phys. Lett. 24 2164
[21] Zhang Y 2007 Acta Phys. Sin. 56 3054 (in Chinese)
[22] He G and Mei F X 2007 J. Beijing Inst. Tech. 27565 (in Chinese)
[23] Jing H X, Li Y C and Xia L L 2007 Acta Phys. Sin. 56 3043 (in Chinese)
[24] Galiullin A S, Gafarov G G, Malaishka R P and Khwan A M 1997 Analytical Dynamics of Helmholtz, Birkhoff and Nambu Systems(Moscow: UFN) (in Russian)
Related articles from Frontiers Journals
[1] HUANG Chao-Guang,**,TIAN Yu,WU Xiao-Ning,XU Zhan,ZHOU Bin. New Geometry with All Killing Vectors Spanning the Poincaré Algebra[J]. Chin. Phys. Lett., 2012, 29(4): 1523-1526
[2] ZHENG Shi-Wang, WANG Jian-Bo, CHEN Xiang-Wei, XIE Jia-Fang. Mei Symmetry and New Conserved Quantities of Tzénoff Equations for the Variable Mass Higher-Order Nonholonomic System[J]. Chin. Phys. Lett., 2012, 29(2): 1523-1526
[3] A H Bokhari, F D Zaman, K Fakhar, *, A H Kara . A Note on the Invariance Properties and Conservation Laws of the Kadomstev–Petviashvili Equation with Power Law Nonlinearity[J]. Chin. Phys. Lett., 2011, 28(9): 1523-1526
[4] FENG Hai-Ran**, CHENG Jie, YUE Xian-Fang, ZHENG Yu-Jun, DING Shi-Liang . Analytical Research on Rotation-Vibration Multiphoton Absorption of Diatomic Molecules in Infrared Laser Fields[J]. Chin. Phys. Lett., 2011, 28(7): 1523-1526
[5] JIANG Zhi-Wei . A New Model for Quark Mass Matrix[J]. Chin. Phys. Lett., 2011, 28(6): 1523-1526
[6] YAN Lu, SONG Jun-Feng, QU Chang-Zheng** . Nonlocal Symmetries and Geometric Integrability of Multi-Component Camassa–Holm and Hunter–Saxton Systems[J]. Chin. Phys. Lett., 2011, 28(5): 1523-1526
[7] XIA Li-Li . A Field Integration Method for a Nonholonomic Mechanical System of Non-Chetaev's Type[J]. Chin. Phys. Lett., 2011, 28(4): 1523-1526
[8] WANG Peng . Perturbation to Noether Symmetry and Noether adiabatic Invariants of Discrete Mechanico-Electrical Systems[J]. Chin. Phys. Lett., 2011, 28(4): 1523-1526
[9] LI Ji-Na, ZHANG Shun-Li, ** . Approximate Symmetry Reduction for Initial-value Problems of the Extended KdV-Burgers Equations with Perturbation[J]. Chin. Phys. Lett., 2011, 28(3): 1523-1526
[10] WANG Hong**, TIAN Ying-Hui, CHEN Han-Lin . Non-Lie Symmetry Group and New Exact Solutions for the Two-Dimensional KdV-Burgers Equation[J]. Chin. Phys. Lett., 2011, 28(2): 1523-1526
[11] HUANG Wei-Li, CAI Jian-Le** . Conformal Invariance of Higher-Order Lagrange Systems by Lie Point Transformation[J]. Chin. Phys. Lett., 2011, 28(11): 1523-1526
[12] NI Jun . Unification of General Relativity with Quantum Field Theory[J]. Chin. Phys. Lett., 2011, 28(11): 1523-1526
[13] K. Fakhar**, A. H. Kara. An Analysis of the Invariance and Conservation Laws of Some Classes of Nonlinear Ostrovsky Equations and Related Systems[J]. Chin. Phys. Lett., 2011, 28(1): 1523-1526
[14] MEI Feng-Xiang, CUI Jin-Chao, CHANG Peng. A Field Integration Method for a Weakly Nonholonomic System[J]. Chin. Phys. Lett., 2010, 27(8): 1523-1526
[15] TAO Si-Xing, XIA Tie-Cheng. Lie Algebra and Lie Super Algebra for Integrable Couplings of C-KdV Hierarchy[J]. Chin. Phys. Lett., 2010, 27(4): 1523-1526
Viewed
Full text


Abstract