Chin. Phys. Lett.  2008, Vol. 25 Issue (4): 1423-1426    DOI:
Original Articles |
Effects of Contact Geometry on Electron Transport of 1,4-Diaminobenzene
ZHENG Ji-Ming1;REN Zhao-Yu1;GUO Ping2;TIAN Jin-Shou3;BAI Jin-Tao1
1Institute of Photonics and Photo-technology, Northwest University, Xi'an 7100692Department of Physics, Northwest University, Xi'an 7100693Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi'an 710069
Cite this article:   
ZHENG Ji-Ming, REN Zhao-Yu, GUO Ping et al  2008 Chin. Phys. Lett. 25 1423-1426
Download: PDF(4990KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The equilibrium electron transport of 1,4-diaminobenzene sandwiched between two Au electrodes is simulated by using a first principles analysis. The results show that equilibrium conductance increases with the molecule-electrode distance decreasing, and a platform occurs at the distance varying from 1.4A to 1.9A, implying the insensitiveness of 1,4-diaminobenzene equilibrium conductance to molecule--electrode distance. This is helpful to understand the improved reliability and reproducibility of conductance measurements using amines.
Keywords: 73.23.-b      73.40.Ty     
Received: 27 November 2007      Published: 31 March 2008
PACS:  73.23.-b (Electronic transport in mesoscopic systems)  
  73.40.Ty (Semiconductor-insulator-semiconductor structures)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2008/V25/I4/01423
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHENG Ji-Ming
REN Zhao-Yu
GUO Ping
TIAN Jin-Shou
BAI Jin-Tao
[1] Chen J et al 1999 Science 286 1550
[2] Collier C P et al 1999 Science 285 391
[3] Emberly E G and Kirczenow G 2003 Phys. Rev. Lett. 91188301
[4] Aviram A and Ranter M A 1974 Chem. Phys. Lett. 29 277
[5] Reed M A et al 1997 Science 278 252
[6] Smit R et al 2002 Nature 419 906
[7] Xu B Q et al 2003 Science 301 1221
[8] Cui X D et al 2001 Science 294 571
[9] Dadosh T et al 2005 Nature 436 677
[10] Venkataraman L et al 2006 Nature 442 904
[11] Quinn J R et al 2007 J. Am. Chem. Soc. 129 6714
[12] Venkataraman L et al 2006 Nano Lett. 6 458
[13] Stokbro K et al 2003 Comput. Mater. Sci. 27 151
[14] David Q et al 2006 J. Chem. Phys. 125 174718
[15] Lee Y J et al 2004 Phys. Rev. B 69 125409
[16] Tongy S et al 2004 Phys. Rev. Lett. 93 136404
[17] Taylor J et al 2002 Phys. Rev. Lett. 89 138301
[18] Crljen Z et al 2005 Phys. Rev. B 71 165316
[19] Dai Z X et al 2005 Phys. Rev. B 72 205408
[20] Zheng X H et al 2006 Phys. Rev. B 74 085418
[21] Maiti A et al 2002 Phys. Rev. Lett. 88 12680
[22] Yan Q et al 2006 Appl. Phys. Lett. 88 173107
[23] Yan Q et al 2005 Phys. Rev. B 72 155425
[24] Brandbyge M et al 2002 Phys. Rev. B 65 165401
[25] Perdew J P and Zunger A 1981 Phys. Rev. B 23 5048
[26] Datta S 2005 Quantum Transport---Atom to Transistor(Cambridge: Cambridge University Press) p12
Related articles from Frontiers Journals
[1] ZHAO Peng**,LIU De-Sheng,. Electronic Transport Properties of an Anthraquinone-Based Molecular Switch with Carbon Nanotube Electrodes[J]. Chin. Phys. Lett., 2012, 29(4): 1423-1426
[2] XIA Cai-Juan**, LIU De-Sheng, ZHANG Ying-Tang . Electronic Transport Properties of a Naphthopyran-Based Optical Molecular Switch: an ab initio Study[J]. Chin. Phys. Lett., 2011, 28(9): 1423-1426
[3] ZHAO Xiang-Fu**, HAN Ping, ZHANG Rong, ZHENG You-Dou . Influence of Fluorine on the Conductivity and Oxidation of Silicon Nanomembranes after Hydrofluoric Acid Treatment[J]. Chin. Phys. Lett., 2011, 28(8): 1423-1426
[4] ZHAO Peng**, LIU De-Sheng, ZHANG Ying, WANG Pei-Ji, ZHANG Zhong . Rectifying Properties of a Nitrogen/Boron-Doped Capped-Carbon-Nanotube-Based Molecular Junction[J]. Chin. Phys. Lett., 2011, 28(4): 1423-1426
[5] ZHENG Ji-Ming, HUANG Yao-Qing**, REN Zhao-Yu, YANG Hui-Jing, CAO Mao-Sheng** . Electronic Non-Resonant Tunneling through Diaminoacenes: A First-Principles Investigation[J]. Chin. Phys. Lett., 2011, 28(2): 1423-1426
[6] ZHOU Li-Ling . Unique Properties of Heat Generation in Nanoscale Systems[J]. Chin. Phys. Lett., 2011, 28(12): 1423-1426
[7] CAO Wen-Qiang, , LU Ming-Ming, WEN Bo, CHEN Yuan-Lu, LI Hong-Bo, YUAN Jie**, CAO Mao-Sheng** . MWCNTs/SiO2 Composite System: Carrier Transmission, Twin-Percolation and Dielectric Properties[J]. Chin. Phys. Lett., 2011, 28(10): 1423-1426
[8] Attia A. Awadalla, Adel H. Phillips** . Thermal Shot Noise through Boundary Roughness of Carbon Nanotube Quantum Dots[J]. Chin. Phys. Lett., 2011, 28(1): 1423-1426
[9] ZHANG Qing-Yun, WANG Bai-Geng, SHEN Rui, XING Ding-Yu. Generation and Quantum Interference of Entangled Electron-Hole Pairs in a Hanbury Brown and Twiss Interferometer[J]. Chin. Phys. Lett., 2010, 27(9): 1423-1426
[10] CHEN Zhi-Dong, ZHANG Jin-Yu, YU Zhi-Ping. Numerical Analysis of Alternating-Current Small-Signal Response in Graphene Nanoribbons[J]. Chin. Phys. Lett., 2010, 27(8): 1423-1426
[11] XIAO Chun, ZHANG Ye-Wen, ZHENG Fei-Hu, WEI Wen-Jie, AN Zhen-Lian. Electric Field Analysis of Space Charge Injection from a Conductive Nano-Filler Electrode[J]. Chin. Phys. Lett., 2010, 27(7): 1423-1426
[12] WANG Jing, LIANG Yun-Ye, CHEN Hao, WANG Peng, R. Note, H. Mizuseki, Y. Kawazoe. Self-Consistent Study of Conjugated Aromatic Molecular Transistors[J]. Chin. Phys. Lett., 2010, 27(6): 1423-1426
[13] LIN Liang-Zhong, ZHU Rui, DENG Wen-Ji. Shot Noise in Aharonov-Casher Rings[J]. Chin. Phys. Lett., 2010, 27(6): 1423-1426
[14] LI Jin-Liang, LI Yu-Xian. Spin Current Through Triple Quantum Dot in the Presence of Rashba Spin-Orbit Interaction[J]. Chin. Phys. Lett., 2010, 27(5): 1423-1426
[15] KONG Xiao-Lan, XIONG Yong-Jian. Resonance Transport of Graphene Nanoribbon T-Shaped Junctions[J]. Chin. Phys. Lett., 2010, 27(4): 1423-1426
Viewed
Full text


Abstract