Chin. Phys. Lett.  2008, Vol. 25 Issue (4): 1305-1308    DOI:
Original Articles |
Laser-Duration Dependence of Emission Properties of High-Order Harmonic Generation
GE Yu-Cheng
Department of Technical Physics and State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871
Cite this article:   
GE Yu-Cheng 2008 Chin. Phys. Lett. 25 1305-1308
Download: PDF(200KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Quantitative investigations are made for the laser-duration dependence of the emission properties of high-order harmonic generation (HHG). HHG emission properties produced by few-cycle lasers show some useful characteristics. The cutoff energy is less than that by laser for infinite duration. The single energy distribution pulse decreases much faster than its
duration as the laser duration grows. A two-cycle laser with carrier-envelope phase of 0° can produce a single distribution pulse peaked at the laser carrier phase 1.22rad and spanned 1.18rad with the cutoff energy 2.9Up+Ip and a bandwidth 0.63Up, where Up is the ponderomotive potential of the laser field and Ip is the atomic ionization potential.
Keywords: 42.65.Re      42.65.Ky      32.80.Rm      42.50.Hz     
Received: 18 December 2007      Published: 31 March 2008
PACS:  42.65.Re (Ultrafast processes; optical pulse generation and pulse compression)  
  42.65.Ky (Frequency conversion; harmonic generation, including higher-order harmonic generation)  
  32.80.Rm (Multiphoton ionization and excitation to highly excited states)  
  42.50.Hz (Strong-field excitation of optical transitions in quantum systems; multiphoton processes; dynamic Stark shift)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2008/V25/I4/01305
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
GE Yu-Cheng
[1] Drescher M et al 2001 Science 291 1923
[2] Hentschel M et al 2001 Nature 414 509
[3] Drescher M et al 2002 Nature 419 803
[4] Kienberger R et al 2004 Nature 427 817
[5] Mairesse Y and Qu\'{er\'{e F 2005 Phys. Rev. A 71 011401(R)
[6] Sansone G et al 2006 Science 314 443
[7] Spielmann C and Burnett N H 1997 Science 278661
[8] Schn\"{urer M et al 1998 Phys. Rev. Lett. 803236
[9] Ge Y C 2006 Chin. Phys. Lett. 23 2461-2464
[10] Lewenstein M 1994 Phys. Rev. A 49 2117
[11] Ge Y C 2005 Chin. Phys. Lett. 22 349
[12] Ge Y C 2006 Phys. Rev. A 74 015803
[13] Ge Y C 2005 Chin. Phys. Lett. 22 1916
[14] Ge Y C 2005 Chin. Phys. Lett. 23 143
[15] Ge Y C 2005 Chin. Phys. 15 2909
Related articles from Frontiers Journals
[1] ZHANG Feng-Feng, YANG Feng, ZHANG Shen-Jin, WANG Zhi-Min, XU Feng-Liang, PENG Qin-Jun, ZHANG Jing-Yuan, WANG Xiao-Yang, CHEN Chuang-Tian, XU Zu-Yan. A Polarization-Adjustable Picosecond Deep-Ultraviolet Laser for Spin- and Angle-Resolved Photoemission Spectroscopy[J]. Chin. Phys. Lett., 2012, 29(6): 1305-1308
[2] SHEN Jian, ZHANG Huai-Wu, LI Yuan-Xun. Terahertz Emission of Ferromagnetic Ni-Fe Thin Films Excited by Ultrafast Laser Pulses[J]. Chin. Phys. Lett., 2012, 29(6): 1305-1308
[3] WANG Li-Rong, WANG Gui-Ling, ZHANG Xin, LIU Li-Juan, WANG Xiao-Yang, ZHU Yong, CHEN Chuang-Tian. Generation of Ultraviolet Radiation at 266 nm with RbBe2BO3F2 Crystal[J]. Chin. Phys. Lett., 2012, 29(6): 1305-1308
[4] HAN Ying,**,HOU Lan-Tian,ZHOU Gui-Yao,YUAN Jin-Hui,XIA Chang-Ming,WANG Wei,WANG Chao,HOU Zhi-Yun,. Flat Supercontinuum Generation within the Telecommunication Wave Bands in a Photonic Crystal Fiber with Central Holes[J]. Chin. Phys. Lett., 2012, 29(5): 1305-1308
[5] M. A. Ismail,S. J. Tan,N. S. Shahabuddin,S. W. Harun,**,H. Arof,H. Ahmad. Performance Comparison of Mode-Locked Erbium-Doped Fiber Laser with Nonlinear Polarization Rotation and Saturable Absorber Approaches[J]. Chin. Phys. Lett., 2012, 29(5): 1305-1308
[6] HUANG Xi,QIN Cui,YU Yu,ZHANG Zheng,ZHANG Xin-Liang**. Single- and Dual-Channel DPSK Signal Amplitude Regeneration Based on a Single Semiconductor Optical Amplifier[J]. Chin. Phys. Lett., 2012, 29(5): 1305-1308
[7] WU Wen-Han,HUANG Xi,YU Yu**,ZHANG Xin-Liang. RZ-DQPSK Signal Amplitude Regeneration Using a Semiconductor Optical Amplifier[J]. Chin. Phys. Lett., 2012, 29(4): 1305-1308
[8] KONG Duan-Hua, ZHU Hong-Liang, LIANG Song, QIU Ji-Fang, ZHAO Ling-Juan. Ultrashort Pulse Generation at Quasi-40-GHz by Using a Two-Section Passively Mode-Locked InGaAsP-InP Tensile Strained Quantum-Well Laser[J]. Chin. Phys. Lett., 2012, 29(2): 1305-1308
[9] HAN Ying, **, HOU Lan-Tian, YUAN Jin-Hui, XIA Chang-Ming, ZHOU Gui-Yao,. Ultraviolet Continuum Generation in the Fundamental Mode of Photonic Crystal Fibers[J]. Chin. Phys. Lett., 2012, 29(1): 1305-1308
[10] LI Zhong-Hua, LI Yuan, DOU Ya-Fang, GAO Jiang-Rui, ZHANG Jun-Xiang**. Comparison of the Noise Properties of Squeezed Probe Light in Optically Thick and Thin Quantum Coherence Media for Weak and Strong Coupling Lights[J]. Chin. Phys. Lett., 2012, 29(1): 1305-1308
[11] DONG Jian-Ji**, LUO Bo-Wen, ZHANG Yin, LEI Lei, HUANG De-Xiu, ZHANG Xin-Liang. All-Optical Temporal Differentiator Using a High Resolution Optical Arbitrary Waveform Shaper[J]. Chin. Phys. Lett., 2012, 29(1): 1305-1308
[12] TENG Hao, MA Jing-Long, WANG Zhao-Hua, ZHENG Yi, GE Xu-Lei, ZHANG Wei, WEI Zhi-Yi**, LI Yu-Tong, ZHANG Jie,. A 100-TW Ti:Sapphire Laser System at a Repetition Rate of 0.1 Hz[J]. Chin. Phys. Lett., 2012, 29(1): 1305-1308
[13] LI Xiao**, XIAO Hu, DONG Xiao-Lin, MA Yan-Xing, XU Xiao-Jun** . Coherent Beam Combining of Two Slab Laser Amplifiers and Second-Harmonic Phase Locking Based on a Multi-Dithering Technique[J]. Chin. Phys. Lett., 2011, 28(9): 1305-1308
[14] WANG Yuan-Sheng, XIA Chang-Long, GUO Jing**, LIU Xue-Shen** . Relative Phase Dependence of Double Ionization in a Synthesized Laser Pulse[J]. Chin. Phys. Lett., 2011, 28(8): 1305-1308
[15] JI Zhong-Hua, ZHANG Hong-Shan, WU Ji-Zhou, YUAN Jin-Peng, ZHAO Yan-Ting**, MA Jie, WANG Li-Rong, XIAO Lian-Tuan, JIA Suo-Tang . Photoassociative Production and Detection of Ultracold Polar RbCs Molecules[J]. Chin. Phys. Lett., 2011, 28(8): 1305-1308
Viewed
Full text


Abstract