Chin. Phys. Lett.  2008, Vol. 25 Issue (4): 1165-1167    DOI:
Original Articles |
Maximum Path Information and Fokker--Planck Equation
LI Wei1,2;Q. A. Wang2;A. Le Mehaute2
1Complexity Science Center and Institute of Particle Physics, Huazhong Normal University, Wuhan 4300792Institut Superieur des Materiaux du Mans, 44, Avenue F.A. Bartholdi, 72000 Le Mans, France
Cite this article:   
LI Wei, Q. A. Wang, A. Le Mehaute 2008 Chin. Phys. Lett. 25 1165-1167
Download: PDF(148KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We present a rigorous method to derive the nonlinear Fokker--Planck (FP) equation of anomalous diffusion directly from a generalization of the principle of least action of Maupertuis proposed by Wang [Chaos, Solitons & Fractals 23(2005)1253] for smooth or quasi-smooth irregular dynamics evolving in Markovian process. The FP equation obtained may take two different but equivalent forms. It was also found that the diffusion constant may depend on both q (the index of Tsallis entropy [J. Stat. Phys. 52(1988)479] and the time t.
Keywords: 02.50.-r      05.20.-y      05.70.-a     
Received: 02 January 2008      Published: 31 March 2008
PACS:  02.50.-r (Probability theory, stochastic processes, and statistics)  
  05.20.-y (Classical statistical mechanics)  
  05.70.-a (Thermodynamics)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2008/V25/I4/01165
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LI Wei
Q. A. Wang
A. Le Mehaute
[1] Wang Q A 2005 Chaos, Solitons & Fractals 23 1253
[2] Tsallis C 1988 J. Stat. Phys. 52 479
[3] Fokker A D 1914 Ann. Physik 43 810
[4] Planck M 1917 Sitzber. Preuss. Akad. Wiss. p324
[5] Uhlenbeck G E and Ornstein L S 1930 Phys. Rev. 36 832
[6] Chandrasekhar S 1943 Rev. Mod. Phys. 15 1
[7] Wang M C and Uhlenbeck G E 1945 Rev. Mod. Phys. 17 323
[8] Haken H 1975 Rev. Mod. Phys. 47 67
[9] Schuss Z 1980 Theory and Applications of StochasticDifferential Equations (New York: Wiley)
[10] Risken H 1984 The Fokker--Planck Equation (Berlin: Springer)
[11] Shannon C E 1948 Bell System Tech. J. 27 379 Shannon C E 1948 Bell System Tech. J. 27 623
[12] Tsallis C 1994 New Trends in Magnetism, MagneticMaterials and Their Applications (New York: Plenum) p 451
[13] Prato D 1995 Phys. Lett. A 203 165
[14] Wang Q A, Bangoupa S, Dzanguea F, Jeatsaa A, Tsobnanga F and LeM\'ehaut\'e A 2008 Chaos, Solitons $\&$ Fractals (in press)
[15] Michael F and Johnson M D 2003 Physica A 324359
[16] Tsallis C and Bukman D J 1996 Phys. Rev. E 54 2197
[17] Wang Q A 2004 Chaos, Solitons $\&$ Fractals 19 639
[18] Wang Q A, Le M\'ehaut\'e A, Nivanen L and Pezeril M 2004 Physica A 340 117
Related articles from Frontiers Journals
[1] SHU Chang-Zheng,NIE Lin-Ru**,ZHOU Zhong-Rao. Stochastic Resonance-Like and Resonance Suppression-Like Phenomena in a Bistable System with Time Delay and Additive Noise[J]. Chin. Phys. Lett., 2012, 29(5): 1165-1167
[2] REN Xue-Zao, YANG Zi-Mo, WANG Bing-Hong, ZHOU Tao. Mandelbrot Law of Evolving Networks[J]. Chin. Phys. Lett., 2012, 29(3): 1165-1167
[3] Azad A. Siddiqui**, Syed Muhammad Jawwad Riaz, M. Akbar . Foliation and the First Law of Black Hole Thermodynamics[J]. Chin. Phys. Lett., 2011, 28(5): 1165-1167
[4] LI Chun, MEI Dong-Cheng, ** . Effects of Time Delay on Stability of an Unstable State in a Bistable System with Correlated Noises[J]. Chin. Phys. Lett., 2011, 28(4): 1165-1167
[5] HE Zheng-You, ZHOU Yu-Rong** . Vibrational and Stochastic Resonance in the FitzHugh–Nagumo Neural Model with Multiplicative and Additive Noise[J]. Chin. Phys. Lett., 2011, 28(11): 1165-1167
[6] ZHOU Yu-Rong. Effect of Time-Delay in the Logistic Growth Model Driven by Weak Signal and White Noise[J]. Chin. Phys. Lett., 2010, 27(8): 1165-1167
[7] XU Yan, GUO Liang-Peng, DING Ning, WANG You-Gui. Evidence of Scaling in Chinese Income Distribution[J]. Chin. Phys. Lett., 2010, 27(7): 1165-1167
[8] TIAN Jing, CHEN Yong. Effect of Time Delay on Stochastic Tumor Growth[J]. Chin. Phys. Lett., 2010, 27(3): 1165-1167
[9] SHEN Jing. Condensation of Self-Driven Particles in Scale-Free Networks[J]. Chin. Phys. Lett., 2010, 27(2): 1165-1167
[10] LI Jian-Long, ZENG Ling-Zao, ZHANG Hui-Quan. A Demonstration of Equivalence between Parameter-Induced and Noise-Induced Stochastic Resonances with Multiplicative and Additive Noises[J]. Chin. Phys. Lett., 2010, 27(10): 1165-1167
[11] NIE Lin-Ru, GONG Ai-Ling, MEI Dong-Cheng. Resonant-Like Activation in a Bistable System with Noise and Time Delay[J]. Chin. Phys. Lett., 2009, 26(6): 1165-1167
[12] HONG Wei, HAN Xiao-Pu, ZHOU Tao, WANG Bing-Hong,. Heavy-Tailed Statistics in Short-Message Communication[J]. Chin. Phys. Lett., 2009, 26(2): 1165-1167
[13] ZOU Zhi-Yun, MAO Bao-Hua, HAO Hai-Ming, GAO Jian-Zhi, YANG Jie-Jiao. Regular Small-World Network[J]. Chin. Phys. Lett., 2009, 26(11): 1165-1167
[14] GUO Feng, HUANG Zhi-Qi, FAN Yong, LI Shao-Fu, ZHANG Yu. Stochastic Resonance in a Time-Delayed Mono-Stable System with Multiplicative and Additive Noise[J]. Chin. Phys. Lett., 2009, 26(10): 1165-1167
[15] HUA Da-Yin. Dynamics of Symmetric Conserved Mass Aggregation Model on Complex Networks[J]. Chin. Phys. Lett., 2009, 26(1): 1165-1167
Viewed
Full text


Abstract