Original Articles |
|
|
|
|
Quasinormal Spectrum and Quantization of the Kerr--Newman Black Hole |
JING Ji-Liang;DING Chi-Kun |
Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control (Ministry of Education), Institute of Physics, Hunan Normal University, Changsha 410081 |
|
Cite this article: |
JING Ji-Liang, DING Chi-Kun 2008 Chin. Phys. Lett. 25 858-861 |
|
|
Abstract The intermediate asymptotic quasinormal mode spectrum of the charged scalar and Dirac fields in the near extremal Kerr--Newman black hole is studied analytically. It is found that the quasinormal mode spectrum can be expressed in terms of the Hawking temperature Thb, the electric potential Φ+ and the horizon's angular velocity ΩH for the case of (eΦ-+mΩH)> (1-4π Thb)ReΩ (where e is the charge and m is the azimuthal projection number), whereas it is only relevant to the charge and the mass parameter for another case. It is also shown that by using the Bohr's correspondence principle, the fundamental change in the black-hole surface area induced by the emission of a rotating charged quantum from the Kerr--Newman black hole is in accord with the Bekenstein--Mukhanov general prediction.
|
Keywords:
04.70.Dy
04.90.+e
04.70.Bw
97.60.Lf
|
|
Received: 15 October 2007
Published: 27 February 2008
|
|
PACS: |
04.70.Dy
|
(Quantum aspects of black holes, evaporation, thermodynamics)
|
|
04.90.+e
|
(Other topics in general relativity and gravitation)
|
|
04.70.Bw
|
(Classical black holes)
|
|
97.60.Lf
|
(Black holes)
|
|
|
|
|
[1] Chandrasekhar S and Detweiler S 1975 Proc. R. Soc.Lond. A 344 441 [2] Frolov V P and Novikov I D 1998 Black Hole Physics:Basic Concepts and New Developments (Dordrecht: Kluwer) [3] Maldacena J 1998 Adv. Theor. Math. Phys. 2 231 [4] Witten E 1998 Adv. Theor. Math. Phys. 2 253 [5] Rama K S and Sathiapalan B 1999 Mod. Phys. Lett. A 14 2635 [6] Hod S 1998 Phys. Rev. Lett. 81 4293 [7] Dreyer O 2003 Phys. Rev. Lett. 90 081301 [8] Baez J 2003 Matters of Gravity (Berlin: Springer) [9] Kunstatter G 2003 Phys. Rev. Lett. 90 161301 [10] Kerr R P 1963 Phys. Rev. Lett. 11 237 [11] Chan J S F and Mann R B 1999 Phys. Rev. D 55 7546 [12] Horowitz G T and Hubeny V E 2000 Phys. Rev. D 62 024027 [13] Cardoso V and Lemos J P S 2001 Phys. Rev. D 64 084017 [14] Konoplya R A 2002 Phys. Rev. D 66 044009 [15] Moss I G and Norman J P 2002 Class. Quant. Grav. 19 2323 [16]Birmingham D, Sachs I and Solodukhin S N 2002 Phys. Rev.Lett. 88 151301 [17] Cardoso V and Lemos J P S 2001 Phys. Rev. D 63 124015 [18] Natario J and Schiappa R 2004 hep-th/0411267 [19] Starinets A O 2002 Phys. Rev. D 66 124013 [20] Aros R, Martinez C, Troncoso R and Zanelli J 2003 Phys. Rev. D 67 044014 [21] Berti E and Kokkotas K D 2005 Phys. Rev. D 71 124008 [22] Chen S B and Jing J L 2005 Class. Quant. Grav. 22 533 [23] Giammatteo M and Moss I G 2005 Class. Quant. Grav. 22 1803 [24] Konoplya R A 2002 Phys. Rev. D 66 084007 [25] Nunez A and Starinets A O 2002 Phys. Rev. D 67 124013 [26] Kurita Y and Sakagami M A 2003 Phys. Rev. D 67 024003 [27]Zhidenko A 2004 Class. Quant. Grav. 21 273 [28] Jing J L 2004 Phys. Rev. D 69 084009 [29] Kokkotas K D 1993 Nuovo Cimento Soc. Ital. Fis. B 108 991 [30] Jing J L and Pan Q Y 2005 Nucl. Phys. B 728 109 [31] Leaver E W 1985 Proc. R. Soc. Lond. A 402 285 [32]Majumdar B and Panchapakesan N 1989 Phys. Rev. D 40 2568 [33] Leaver E W 1990 Phys. Rev. D 41 2986 [34] Hod S and Keshet U 2005 Class. Quant. Grav. 22 L71 [35] Hod S 2006 Class. Quant. Grav. 23 L23 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|