Chin. Phys. Lett.  2008, Vol. 25 Issue (3): 854-857    DOI:
Original Articles |
Gravitational Collapse of Radiating Dyon Solution and Cosmic Censorship Hypothesis
K. D. Patil1;S. S. Zade2;A. N. Mohod3
1Department of Mathematics, B. D. College of Engineering, Sewagram, Wardha, India2Department of Mathematics, J. B. College of Science, Wardha, India3Department of Mathematics, S. S. S. K. R. Innani Mahavidyalaya, Karanja, India
Cite this article:   
K. D. Patil, S. S. Zade, A. N. Mohod 2008 Chin. Phys. Lett. 25 854-857
Download: PDF(181KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We investigate the possibility of cosmic censorship violation in the gravitational collapse of radiating dyon solution. It is shown that the final outcome of the collapse depends sensitively on the electric and magnetic charge parameters. The graphs of the outer apparent horizon, inner Cauchy
horizon for different values of parameters are drawn. It is found that the electric and magnetic components push the apparent horizon towards the retarded time-coordinate axis, which in turn reduces the radius of the apparent horizon in Vaidya spacetime. Also, we extend the earlier work of Chamorro and Virbhadra [Pramana, J. Phys. 45(1995)181].
Keywords: 04.20.Dw      04.20.Cv      04.70.Bw     
Received: 12 December 2007      Published: 27 February 2008
PACS:  04.20.Dw (Singularities and cosmic censorship)  
  04.20.Cv (Fundamental problems and general formalism)  
  04.70.Bw (Classical black holes)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2008/V25/I3/0854
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
K. D. Patil
S. S. Zade
A. N. Mohod
[1] Penrose R 1969 Riv. Nuovo Cimento 1 252
[2]Eardley D M and Smarr L 1979 Phys. Rev. D 19 2239
[3]Christodoulou D 1984 Commun. Math. Phys. 93 171
[4]Newman R P A C 1986 Class. Quantum Grav. 3 527
[5]Joshi P S and Dwivedi I H 1993 Phys. Rev. D 47 5537
[6] Patil K D 2003 Phys. Rev. D 67 024017
[7]Patil K D 2006 Int. J. Mod. Phys. D 15(2) 251
[8] Hiscok W A Williams L G and Eardley D M 1982 Phys.Rev. D 26 751
[9] Rajagopal K and Lake K 1987 Phys. Rev. D 35 1531
[10]Dwivedi I H and Joshi P S 1989 Class. Quantum Grav. 6 1599
[11]Lake K and Zannias T 1991 Phys. Rev. D 43 1798
[12]Lemos J P S 1999 Phys. Rev. D 59 044020
[13]Papapetrou A 1985 A Random Walk in Relativity andGravitation eds Dadhich N, Rao J K, Narlikar J V and Vishveshwara CV (New York: Wiley) p 184
[14] Patil K D and Zade S S 2006 Int. J. Mod. Phys. D 15 1359
[15]Patil K D and Thool U S 2006 Int. J. Mod. Phys. D 15(11) 1977
[16]Ori A and Piran T 1987 Phys. Rev. Lett. 59 2137
[17] Ori A and Piran T 1990 Phys. Rev. D 42 1068
[18] Harada T and Maeda H 2001 Phys. Rev. D 63 0804022
[19]Iguchi H, Harada T and Mena Filipe C 2005 Class.Quantum Grav. 22 841
[20]Harko T and Cheng K S 2000 Phys. Lett. A 266 249
[21] Ghosh S G and Dadhich N 2003 Gen. Relativ. Gravit. 35 359
[22]Lake K and Hellaby C 1981 Phys. Rev. D 43 3019
[23] Chamorro A and Virbhadra K S 1995 Pramana, J. Phys. 45 181
[24] Semiz I 1992 Phys. Rev. D 46 5414
[25]Joshi P S 1993 Global Aspects in Gravitation andCosmology (Oxford: Clarendon)
[26] Dwivedi I H and Joshi P S 1991 Class. Quantum. Grav. 8 1339
[27] Deshingkar S S, Joshi P S and Dwivedi I H 1999 Phys.Rev. D 59 044018
[28] Clarke C J S and Krolak A 1986 J. Geo. Phys. 2 127
Related articles from Frontiers Journals
[1] K. Fakhar, A. H. Kara. The Reduction of Chazy Classes and Other Third-Order Differential Equations Related to Boundary Layer Flow Models[J]. Chin. Phys. Lett., 2012, 29(6): 854-857
[2] Gamal G. L. Nashed*. Spherically Symmetric Solutions on a Non-Trivial Frame in f(T) Theories of Gravity[J]. Chin. Phys. Lett., 2012, 29(5): 854-857
[3] HUANG Chao-Guang,**,TIAN Yu,WU Xiao-Ning,XU Zhan,ZHOU Bin. New Geometry with All Killing Vectors Spanning the Poincaré Algebra[J]. Chin. Phys. Lett., 2012, 29(4): 854-857
[4] M. Sharif**, G. Abbas. Phantom Energy Accretion by a Stringy Charged Black Hole[J]. Chin. Phys. Lett., 2012, 29(1): 854-857
[5] LIU Yan, JING Ji-Liang**. Propagation and Evolution of a Scalar Field in Einstein–Power–Maxwell Spacetime[J]. Chin. Phys. Lett., 2012, 29(1): 854-857
[6] M Sharif**, G Abbas . Phantom Accretion onto the Schwarzschild de-Sitter Black Hole[J]. Chin. Phys. Lett., 2011, 28(9): 854-857
[7] ZHU Yin . Measurement of the Speed of Gravity[J]. Chin. Phys. Lett., 2011, 28(7): 854-857
[8] ZOU De-Cheng, YANG Zhan-Ying**, YUE Rui-Hong** . Thermodynamics of Slowly Rotating Charged Black Holes in Anti-de Sitter Einstein–Gauss–Bonnet Gravity[J]. Chin. Phys. Lett., 2011, 28(2): 854-857
[9] NI Jun . Unification of General Relativity with Quantum Field Theory[J]. Chin. Phys. Lett., 2011, 28(11): 854-857
[10] HE Xiao-Gang, , MA Bo-Qiang,. Black Holes and Photons with Entropic Force[J]. Chin. Phys. Lett., 2010, 27(7): 854-857
[11] PAN Qi-Yuan, JING Ji-Liang. Late-Time Evolution of the Phantom Scalar Perturbation in the Background of a Spherically Symmetric Static Black Hole[J]. Chin. Phys. Lett., 2010, 27(6): 854-857
[12] LIU Liao. Cosmological Gravitational Wave in de Sitter Spacetime[J]. Chin. Phys. Lett., 2010, 27(2): 854-857
[13] SHEN Ming. A New Solution to Einstein's Field Equations[J]. Chin. Phys. Lett., 2009, 26(6): 854-857
[14] N. Ibotombi Singh, S. Kiranmla Chanu, S. Surendra Singh. Cosmological Models with Time Dependent G and Λ Coupling Scalars[J]. Chin. Phys. Lett., 2009, 26(6): 854-857
[15] GONG Tian-Xi, WANG Yong-Jiu. Orbital Precession Effect in the Reissner-Nordström Field with a Global Monopole[J]. Chin. Phys. Lett., 2009, 26(3): 854-857
Viewed
Full text


Abstract