Original Articles |
|
|
|
|
Maximizing Thermal Entanglement of XY Model Using Site-Dependent Magnetic Fields in Specific Directions |
CHAN Wen-Ling1;YANG Dong2;GU Shi-Jian1 |
1Department of Physics and ITP, The Chinese University of Hong Kong, Hong Kong2Laboratory for Quantum Information and Department of Physics, China Jiliang University, Hangzhou 310018 |
|
Cite this article: |
CHAN Wen-Ling, YANG Dong, GU Shi-Jian 2008 Chin. Phys. Lett. 25 832-835 |
|
|
Abstract We study the thermal entanglement by means of concurrence in a two-qubit isotropic XY model in the presence of site-dependent external magnetic fields in arbitrary directions. We find that at a given temperature and magnetic field strength, the mirror symmetry of the two fields about the x--y plane is a necessary condition for maximum entanglement. However, if there is no constraint on the field strengths, then the necessary condition for maximum entanglement reduces to the configuration that the two fields are vertical, anti-parallel and with the same strength. We also investigate the anisotropic XY model and find that the above conclusion more or less holds.
|
Keywords:
03.67.Lx
03.67.Mn
75.10.Jm
|
|
Received: 06 December 2007
Published: 27 February 2008
|
|
PACS: |
03.67.Lx
|
(Quantum computation architectures and implementations)
|
|
03.67.Mn
|
(Entanglement measures, witnesses, and other characterizations)
|
|
75.10.Jm
|
(Quantized spin models, including quantum spin frustration)
|
|
|
|
|
[1] Nielsen M A and Chuang I L 2000 Quantum Computationand Quantum Information (Cambridge: Cambridge University Press) [2] Nielsen M A 1998 PhD Thesis (University of New Mexico)quant-ph/0011036 [3] Arnesen M C, Bose S and Vedral V 2001 Phys. Rev. Lett. 87 017901 [4] Wang X, Fu H and Solomon A 2001 J. Phys. A 34 11307 [5] Wang X 2002 Phys. Rev. A 66 044305 [6] Wang X and Zanardi P 2002 Phys. Lett. A 301 1 [7] Asoudeh M and Karimipour V 2005 Phys. Rev. A 71 022308 [8] Gunlycke D, Bose S, Kendon V M and Vedral V 2001 Phys.Rev. A 64 042302 [9] Stelmachovic P and Buzek V 2004 Phys. Rev. A 70 032313 [10] Terzis A F and Paspalakis E 2004 Phys. Lett. A 333 438 [11] Cao J P, Sun Z Z, Yin S, Wang Y P and Wang X R 2005 J.Phys. A 38 2579 [12] Wang X 2001 Phys. Rev. A 64 012313 [13] Kamta G L and Starace A F 2002 Phys. Rev. Lett. 88 107901 [14] Anteneodo C and Souza A M C 2003 J. Opt. B: QuantumSemiclass. Opt. 5 73 [15] Sun Y, Chen Y and Chen H 2003 Phys. Rev. A 68 044301 [16] Xin T, Lin J T, Liang L and De-Long R 2004 Modern Phys.Lett. B 18 1059 [17] Wang Y F, Cao J P and Wang Y P 2005 Phys. Lett. A 342 375 [18] Zhang G F and Li S S 2006 Eur. Phys. J. D 37 123 [19] Zhai X Y and Tong P Q 2007 Chin. Phys. Lett. 24 2475 [20] Zhang G F and Li S S 2005 Phys. Rev. A 72 034302 [21] Wu K D and Zhou B 2006 Int. J. Mod. Phys. B 20 2117 [22] Zhang F L, Liang M L and Zhang J H 2007 Opt. Commun. 275 268 [23] Xi X Q, Hao S R, Chen W X and Yue R H 2002 Chin. Phys.Lett. 19 1044 [24] Zhou L, Song H S, Guo Y Q and Li C 2003 Phys. Rev. A 68 024301 [25] Rigolin G 2004 Int. J. Quan. Inf. 2 393 [26] Rossignoli R and Canosa N 2005 Phys. Rev. A 72 012335 [27] Hu Z N, Youn S H, Kang K and Kim C S 2006 J. Phys. A 39 10523 [28] Yu P F, Cai J G, Liu J M and Shen G T 2007 Eur. Phys.J. D 44 151 [29] Eryigit R, Gunduc Y and Eryigit R 2006 Phys. Lett. A 358 363 [30] Deng S S and Gu S J 2005 Chin. Phys. Lett. 22 804 [31] Zhou L, Yi X X, Song H S and Quo Y Q 2004 J. Opt. B 6 378 (in Chinese) [32] Bose I and Tribedi A 2005 Phys. Rev. A 72 022314 [33] Imamoglu A et al 1999 Phys. Rev. Lett. 83 4204 [34] Hill S and Wootters W K 1997 Phys. Rev. Lett. 78 5022 Wootters W K 1998 Phys. Rev. Lett. 80 2245 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|