Chin. Phys. Lett.  2008, Vol. 25 Issue (3): 828-831    DOI:
Original Articles |
Multiparty Quantum Chatting Scheme
SUN Ying1,2;WEN Qiao-Yan1,2;ZHU Fu-Chen3
1State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, Beijing 1008762School of Science, Beijing University of Posts and Telecommunications, Beijing 1008763National Laboratory for Modern Communications, PO Box 810, Chengdu 610041
Cite this article:   
SUN Ying, WEN Qiao-Yan, ZHU Fu-Chen 2008 Chin. Phys. Lett. 25 828-831
Download: PDF(170KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We propose a new multiparty simultaneous quantum direct communication scheme based on Green--Horne--Zeilinger (GHZ) states and dense coding. For achieving high efficiency without leaking any information, four encoding
schemes are prepared in advance. The present scheme has the capacity
of transmitting (M+1) M classical bits per group of M-particle GHZ states when there exist M parties. The technique of rearranging particles makes the legal users coequally exchange their messages in the same length. Both high efficiency and excellent security against the common attacks are virtues of this new scheme.
Keywords: 03.67.Hk      03.65.Ud      03.67.Dd     
Received: 27 December 2007      Published: 27 February 2008
PACS:  03.67.Hk (Quantum communication)  
  03.65.Ud (Entanglement and quantum nonlocality)  
  03.67.Dd (Quantum cryptography and communication security)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2008/V25/I3/0828
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
SUN Ying
WEN Qiao-Yan
ZHU Fu-Chen
[1] Bennett C H and Brassard G 1984 Proc. IEEE Int. Conf.Computers, Systems and Signal Processing (Bangalore, India) (New York:IEEE) p 175
[2] Ekert A K 1991 Phys. Rev. Lett. 67 661
[3] Bennett C H 1992 Phys. Rev. Lett. 68 3121
[4] Bennett C H, Brassard G and Mermin N D 1992 Phys. Rev.Lett. 68 557
[5] Bruss D 1998 Phys. Rev. Lett. 81 3018
[6] Cabello A 2000 Phys. Rev. Lett. 85 5635
[7] Long G L and Liu X S 2002 Phys. Rev. A 65 032302
[8] Beige A, Engler B G, Kurtsiefer C and Weinfurter H 2002 Acta Phys. Pol. A 101 357
[9]Bostr\"om K and Felbinger T 2002 Phys. Rev. Lett. 89187902
[10] Deng F G, Long G L and Liu X S 2003 Phys. Rev. A 68042317
[11] Deng F G and Long G L 2004 Phys. Rev. A 69 052319
[12] Wang C, Deng F G, Li Y S, Liu X S and Long G L 2005 Phys.Rev. A 71 044305
[13] Gao T, Yan F L and Wang Z X 2005 Chin. Phys. Lett. 222473
[14] Cao H J and Song H S 2006 Chin. Phys. Lett. 23 290
[15] Nguyen B A 2004 Phys. Lett. A 328 6
[16] Man Z X, Zhang Z J and Li Y 2005 Chin. Phys. Lett. 2222
[17] Xia Y, Fu C B and Zhang S 2006 J. Korean Phys. Soc. 4824
[18] Jin X R, Ji X, Zhang Y Q, Zhang S, Hong S K, Yeon K H and Um C I2006 Phys. Lett. A 354 67
[19] Nguyen B A 2006 Phys. Lett. A 360 518
[20] Man Z X and Xia Y J 2007 Chin. Phys. Lett. 24 15
[21] Gao T, Yan F L, Wang Z X and Li Y C 2006 Chin. Phys.Lett. 23 2656
Related articles from Frontiers Journals
[1] 天琦 窦,吉鹏 王,振华 李,文秀 屈,舜禹 杨,钟齐 孙,芬 周,雁鑫 韩,雨晴 黄,海强 马. A Fully Symmetrical Quantum Key Distribution System Capable of Preparing and Measuring Quantum States*

Supported by the Fundamental Research Funds for the Central Universities (Grant No. 2019XD-A02), and the State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications (Grant No. IPO2019ZT06).

[J]. Chin. Phys. Lett., 2020, 37(11): 828-831
[2] GUO Yu, LUO Xiao-Bing. Quantum Teleportation between Two Distant Bose–Einstein Condensates[J]. Chin. Phys. Lett., 2012, 29(6): 828-831
[3] REN Jie, WU Yin-Zhong, ZHU Shi-Qun. Quantum Discord and Entanglement in Heisenberg XXZ Spin Chain after Quenches[J]. Chin. Phys. Lett., 2012, 29(6): 828-831
[4] Chang Ho Hong,Jin O Heo,Jong in Lim,Hyung jin Yang,**. A Quantum Network System of QSS-QDC Using χ-Type Entangled States[J]. Chin. Phys. Lett., 2012, 29(5): 828-831
[5] SHAN Chuan-Jia,**,CAO Shuai,XUE Zheng-Yuan,ZHU Shi-Liang. Anomalous Temperature Effects of the Entanglement of Two Coupled Qubits in Independent Environments[J]. Chin. Phys. Lett., 2012, 29(4): 828-831
[6] LI Hong-Rong**,ZHANG Pei,GAO Hong,BI Wen-Ting,ALAMRI M. D.,LI Fu-Li. Non-Equilibrium Quantum Entanglement in Biological Systems[J]. Chin. Phys. Lett., 2012, 29(4): 828-831
[7] GE Rong-Chun, LI Chuan-Feng, GUO Guang-Can. Spin Dynamics in the XY Model[J]. Chin. Phys. Lett., 2012, 29(3): 828-831
[8] M. Ramzan. Decoherence and Multipartite Entanglement of Non-Inertial Observers[J]. Chin. Phys. Lett., 2012, 29(2): 828-831
[9] Piotr Zawadzki**. New View of Ping-Pong Protocol Security[J]. Chin. Phys. Lett., 2012, 29(1): 828-831
[10] LI Jun-Gang, **, ZOU Jian, **, XU Bao-Ming, SHAO Bin, . Quantum Correlation Generation in a Damped Cavity[J]. Chin. Phys. Lett., 2011, 28(9): 828-831
[11] ZHANG Ai-Ping**, QIANG Wen-Chao, LING Ya-Wen, XIN Hong, YANG Yong-Ming . Geometric Phase for a Qutrit-Qubit Mixed-Spin System[J]. Chin. Phys. Lett., 2011, 28(8): 828-831
[12] WANG Chuan, **, HAO Liang, ZHAO Lian-Jie . Implementation of Quantum Private Queries Using Nuclear Magnetic Resonance[J]. Chin. Phys. Lett., 2011, 28(8): 828-831
[13] YAN Hui, **, ZHU Shi-Liang, DU Sheng-Wang . Efficient Phase-Encoding Quantum Key Generation with Narrow-Band Single Photons[J]. Chin. Phys. Lett., 2011, 28(7): 828-831
[14] WANG Xiao-Bo, WANG Jing-Jing, HE Bo, XIAO Lian-Tuan**, JIA Suo-Tang . Photon Counting Optical Time Domain Reflectometry Applying a Single Photon Modulation Technique[J]. Chin. Phys. Lett., 2011, 28(7): 828-831
[15] QIAN Yi, XU Jing-Bo** . Quantum Discord Dynamics of Two Atoms Interacting with Two Quantized Field Modes through a Raman Interaction with Phase Decoherence[J]. Chin. Phys. Lett., 2011, 28(7): 828-831
Viewed
Full text


Abstract