Original Articles |
|
|
|
|
Nonsingular Travelling Complexiton Solutions to a Coupled Korteweg--de Vries Equation |
YANG Xu-Dong1;RUAN Hang-Yu1;LOU Sen-Yue 1,2 |
1Department of Physics, Ningbo University, Ningbo 3152112Department of Physics, Shanghai Jiao Tong University, Shanghai 200030 |
|
Cite this article: |
YANG Xu-Dong, RUAN Hang-Yu, LOU Sen-Yue 2008 Chin. Phys. Lett. 25 805-808 |
|
|
Abstract A class of novel nonsingular travelling complexiton solutions to a coupled Korteweg--de Vries (KdV) equation is presented via the first step Darboux transformation of the complex KdV equation with nonzero seed solution. Furthermore, the properties of the nonsingular solutions are discussed.
|
Keywords:
02.30.Jr
02.30.Ik
05.45.Yv
|
|
Received: 14 September 2007
Published: 27 February 2008
|
|
|
|
|
|
[1] Miura R M, Gardner C S and Kruskal M D 1968 J. Math. Phys. 9 1204 [2] Lou S Y 1994 J. Math. Phys. 35 2390 [3] Magri F 1978 J. Math. Phys. 19 1156 [4] Zakharov V E and Faddeev L D 1971 Functional Anal.Appl. 5 280 [5] Gardner C S, Greene J M, Kruskal M D and Miura R M 1974 Comm. Pure Appl. Math. 27 97 [6] Ablowitz M J and Segur H 1981 Solitons and the InverseScattering Transform ( Philadelphia: SIAM) [7] Matveev V B 1992 Phys. Lett. A 166 205 [8] Rasinariu C, Sukhatme J and Khare A 1996 J. Phys. A: Math.Gen. 29 1803 [9] Ma W X 2002 Phys. Lett. A 301 35 [10] Gear J A and Grimshaw R 1984 Stud. Appl. Math. 70 235 Gear J A 1985 Stud. Appl. Math. 72 95 [11] Lou S Y, Tong B, Hu H C and Tang X Y 2006 J. Phys. A:Math. Gen. 39 513 [12] Brazhnyi V A and Konotop V V 2005 Phys. Rev. E 72026616 [13] Hu H C, Tong B and Lou S Y 2006 Phys. Lett. A 351 403 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|