Chin. Phys. Lett.  2008, Vol. 25 Issue (3): 1153-1156    DOI:
Original Articles |
Topological Self-Similar Networks Introduced by Diffusion-Limited Aggregation Mechanism
YANG Lei1;PEI Wen-Jiang1;LI Tao1;CHEUNG Yiu-Ming2;HE Zhen-Ya1
1School of Information Science and Engineering, Southeast University, Nanjing 2100962Department of Computer Science, Hong Kong Baptist University, Hong Kong
Cite this article:   
YANG Lei, PEI Wen-Jiang, LI Tao et al  2008 Chin. Phys. Lett. 25 1153-1156
Download: PDF(214KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We propose a model for growing fractal networks based on the mechanisms learned from the diffusion-limited aggregation (DLA) model in fractal geometries in the viewpoint of network. By studying the DLA network, our model introduces multiplicative growth, aging and geographical preferential attachment mechanisms, whereby featuring topological self-similar property and hierarchical modularity. According to the results of theoretical analysis and simulation, the degree distribution of the proposed model shows a mixed degree distribution (i.e., exponential and algebraic degree distribution) and the fractal dimension and clustering coefficient can be tuned by changing the values of parameters.
Keywords: 89.75.Hc      61.43.Hv     
Received: 21 November 2007      Published: 27 February 2008
PACS:  89.75.Hc (Networks and genealogical trees)  
  61.43.Hv (Fractals; macroscopic aggregates (including diffusion-limited Aggregates))  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2008/V25/I3/01153
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
YANG Lei
PEI Wen-Jiang
LI Tao
CHEUNG Yiu-Ming
HE Zhen-Ya
[1] Newman M E J 2003 SIAM Rev. 45 167
[2] Dorogovtsev S N and Mendes J F F 2002 Adv. Phys. 51 1079
[3] Albert R and Barabasi A L 2002 Rev. Mod. Phys. 74 47
[4] Barabasi A L and Albert R 1999 Science 286 509
[5] Watts D J and Strogatz S H 1998 Nature 393 440
[6] Ravasz E, Somera A L, Mongru D A, Oltvai Z N and BarabasiA L 2002 Science 297 1551
[7] Ravasz E and Barabasi A L 2003 Phys. Rev. E 67026112
[8] Song C, Havlin S and Makse H A 2005 Nature 433 392
[9] Song C, Havlin S and Makse H A 2006 Nat. Phys. 2 275
[10] Erdos P and Renyi P 1960 Publ. Math. Inst. Hung.Acad. Sci. 5 17
[11] Barriere L, Comellas F and Dalfo C 2006 J. Phys. A 39 11739
[12] Zhang Z Z, Zhou S G and Zou T 2007 Eur. Phys. J. B 56 259
[13] Rozenfeld H D, Havlin S and ben-Avraham D 2007 NewJ. Phys. 9 175
[14] Goh K I et al 2006 Phys. Rev. Lett. 96 018701
[15] Zou L H et al 2007 Phys. A 380 592
[16] Zhang Y C et al 2007 J. Phys. A: Math. Theor. 40 12365
[17] Witten T A and Sander L M 1981 Phys. Rev. Lett. 47 1400
[18] Dorogovtsev S N and Mendes J F F 2000 Phys. Rev. E 62 1842
[19] Song C, Gallos L K, Havlin S and Makse H A 2007 J.Stat. Mech. P03006
[20] Klemm K and Egu\'{\iluz V M 2002 Phys. Rev. E 65 036123
[21] Klemm K and Egu\'{\iluz V M 2002 Phys. Rev. E 65 057102
[22] Amaral L A N, Scala A, Barthelemy M and Stanley H E 2000 Proc. Natl. Acad. Sci. USA 97 11149
[23] Holme P and Kim B J 2002 Phys. Rev. E 65026107
[24] Ozik J, Hunt B R and Ott E 2004 Phys. Rev. E 69 026108
[25] Mossa S, Barthelemy M, Stanley H E and Amaral L A N 2002 Phys. Rev. Lett. 88 138701
[26] Zhang Z Z, Rong L L, Wang B, Zhou S G and Guan J H 2007 Physica A 380 639
[27] Plischke M and Racz Z 1984 Phys. Rev. Lett. 53 415
[28] Barabasi A L, Albert R and Jeong H 1999 Physica A 272 173
Related articles from Frontiers Journals
[1] QI Kai,TANG Ming**,CUI Ai-Xiang,FU Yan. The Slow Dynamics of the Zero-Range Process in the Framework of the Traps Model[J]. Chin. Phys. Lett., 2012, 29(5): 1153-1156
[2] LIU Xu,XIE Zheng,YI Dong-Yun**. Community Detection by Neighborhood Similarity[J]. Chin. Phys. Lett., 2012, 29(4): 1153-1156
[3] LI Ping, ZHANG Jie, XU Xiao-Ke, SMALL Michael. Dynamical Influence of Nodes Revisited: A Markov Chain Analysis of Epidemic Process on Networks[J]. Chin. Phys. Lett., 2012, 29(4): 1153-1156
[4] XIE Zheng, YI Dong-Yun, OUYANG Zhen-Zheng, LI Dong. Hyperedge Communities and Modularity Reveal Structure for Documents[J]. Chin. Phys. Lett., 2012, 29(3): 1153-1156
[5] TIAN Liang, LIN Min. Relaxation of Evolutionary Dynamics on the Bethe Lattice[J]. Chin. Phys. Lett., 2012, 29(3): 1153-1156
[6] REN Xue-Zao, YANG Zi-Mo, WANG Bing-Hong, ZHOU Tao. Mandelbrot Law of Evolving Networks[J]. Chin. Phys. Lett., 2012, 29(3): 1153-1156
[7] ZHU Zi-Qi, JIN Xiao-Ling, HUANG Zhi-Long. Search for Directed Networks by Different Random Walk Strategies[J]. Chin. Phys. Lett., 2012, 29(3): 1153-1156
[8] SUN Mei, CHEN Ying, CAO Long, WANG Xiao-Fang. Adaptive Third-Order Leader-Following Consensus of Nonlinear Multi-agent Systems with Perturbations[J]. Chin. Phys. Lett., 2012, 29(2): 1153-1156
[9] SUN Wei-Gang, , CAO Jian-Ting, WANG Ru-Bin** . Approach of Complex Networks for the Determination of Brain Death[J]. Chin. Phys. Lett., 2011, 28(6): 1153-1156
[10] LI Jun, WU Jun**, LI Yong, DENG Hong-Zhong, TAN Yue-Jin** . Optimal Attack Strategy in Random Scale-Free Networks Based on Incomplete Information[J]. Chin. Phys. Lett., 2011, 28(6): 1153-1156
[11] SHANG Yi-Lun . Local Natural Connectivity in Complex Networks[J]. Chin. Phys. Lett., 2011, 28(6): 1153-1156
[12] CAO Xian-Bin, DU Wen-Bo, **, CHEN Cai-Long, ZHANG Jun . Effect of Adaptive Delivery Capacity on Networked Traffic Dynamics[J]. Chin. Phys. Lett., 2011, 28(5): 1153-1156
[13] LI Jun, WU Jun**, LI Yong, DENG Hong-Zhong, TAN Yue-Jin** . Attack Robustness of Scale-Free Networks Based on Grey Information[J]. Chin. Phys. Lett., 2011, 28(5): 1153-1156
[14] LIU Ai-Fen, XU Xiu-Lian, FU Chun-Hua, WANG Jian, HE Da-Ren** . Competition Ability Dependence on Uniqueness in General Cooperation-Competition Systems[J]. Chin. Phys. Lett., 2011, 28(2): 1153-1156
[15] WEI Du-Qu**, LUO Xiao-Shu, CHEN Hong-Bin, ZHANG Bo . Random Long-Range Interaction Induced Synchronization in Coupled Networks of Inertial Ratchets[J]. Chin. Phys. Lett., 2011, 28(11): 1153-1156
Viewed
Full text


Abstract