Chin. Phys. Lett.  2008, Vol. 25 Issue (2): 783-786    DOI:
Original Articles |
Identification of Radial Distance of Plasma Dispersionless Injection Boundary from the Injection Source
Identification of Radial Distance of Plasma Dispersionless Injection Boundary from the Injection Source
1Key Laboratory of Space Weather, Center for Space Science and Applied Research, Chinese Academy of Sciences, Beijing 1000802Graduate University of the Chinese Academy of Sciences, Beijing 1000493Los Alamos National Laboratory, Los Alamos, New Mexico, USA
Cite this article:   
Identification of Radial Distance of Plasma Dispersionless Injection Boundary from the Injection Source 2008 Chin. Phys. Lett. 25 783-786
Download: PDF(146KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Measurements of energetic particles obtained by the two geosynchronous satellites (1991-080 and LANL-97A) are performed to investigate the plasma injection boundary and source region during the magnetospheric substorms. The measurement method is developed to allow remote sensing of the plasma injection time and the radial distance of injection boundaries by using measured energy dispersion and modelling particle drifts within the Volland--Stern electric field and the dipole magnetic field model. The radial distance of the injection boundary deduced from a dispersion event observed by the LANL-97A satellite on 14 June 1998 is 7.1RE, and the injection time agrees well with the substorm onset time identified by the Polar Ultraviolet Imager. The method has been applied to an event happened at 22.9 UT on 11 March 1998, when both the satellites (1991-080 and LANL-97A) observed the dispersionless character. The results indicate that the radial distance of injection source locates at 8.1RE at magnetotail, and particles move
earthward from magnetotail into inner magnetosphere at 22.5UT.
Keywords: 94.30.Cs      95.75.Rs      94.30.Lr     
Received: 24 August 2007      Published: 30 January 2008
PACS:  94.30.cs (Plasma motion; plasma convection)  
  95.75.Rs (Remote observing techniques)  
  94.30.Lr (Magnetic storms, substorms)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2008/V25/I2/0783
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Identification of Radial Distance of Plasma Dispersionless Injection Boundary from the Injection Source
[1] McIlwain C E 1974 Magnetospheric Physics ed McCormacB M (Norwell, MA: Reidel) p 143
[2] Mauk B H and McIlwain C E 1974 J. Geophys. Res. 79 3193
[3] Konradi A, Semar C L and Fritz T A 1975 J. Geophys.Res. 80 543
[4] Mauk B H and Meng C I 1983 J. Geophys. Res. 883055
[5] Kivelson M G, Kaye S M and Southwood D J 1980 Dynamicsof the Magnetosphere ed Akasofu S I (Hingham, MA: Reidel) p 385
[6] Kaye S M and Kivelson M G 1979 J. Geophys. Res. 84 4183
[7] Sarris T and Li X 2005 Ann. Geophys. 23 877
[8] Birn J, Thomsen M F, Borovsky J E et al 1997b J.Geophys. Res. 102 2325
[9] Li X, Baker D N, Temerin M et al 1998 Geophys. Res.Lett. 25 3763
[10] Zaharia S, Cheng C Z and Johnson J R 2000 J.Geophys. Res. 105 18741
[11] Moore T E, Arnoldy R L, Feynman J et al 1981 J.Geophys. Res. 86 6713
[12] Reeves G D, Henderson M G, McLachlan P S et al 1996 In Substorm 3 579
[13] Thomsen M F, Birn J, Borovsky J E et al 2001 J.Geophys. Res. 106 8405
[14] Reeves G D, Belian R D, Fritz T A 1991 J. Geophys.Res. 96 13997
[15] Reeves G D, Fritz T A, Cayton T E et al 1990 Geophys. Res. Lett. 17 2015
[16] Volland H 1973 J. Geophys. Res. 78 171
[17] Stern D P 1975 J. Geophys. Res. 80 595
[18] Shen C, Liu Z 2003 Chin. J. Geophys. 46 1(in Chinese)
Related articles from Frontiers Journals
[1] CHENG Zheng-Wei**, SHI Jian-Kui, ZHANG Tie-Long, WANG Sheng-Guo, LIU Zhen-Xing . Field-Aligned Currents at the PSBL on 17 August 2001 Storm: Relationships with solar Wind Conditions[J]. Chin. Phys. Lett., 2011, 28(9): 783-786
[2] TANG Chao-Ling** . The Wave-Like Auroral Structure around Auroral Expansion Onset[J]. Chin. Phys. Lett., 2011, 28(10): 783-786
[3] ZHOU Qing-Hua, HE Yi-Hua, HE Zhao-Guo, YANG Chang. Propagation Characteristics of Whistler-Mode Chorus during Geomagnetic Activities[J]. Chin. Phys. Lett., 2010, 27(5): 783-786
[4] XIAO Fu-Liang, TIAN Tian, CHEN Liang-Xu. Bounce-averaged Pitch-angle Diffusion by Electromagnetic Ion Cyclotron Waves in Multi-ion Plasmas[J]. Chin. Phys. Lett., 2009, 26(5): 783-786
[5] LU Xing-Qiang, MA Zhi-Wei,. Dynamic Processes of Cross-Tail Current in the Near-Earth Magnetotail[J]. Chin. Phys. Lett., 2009, 26(5): 783-786
[6] SU Zhen-Peng, ZHENG Hui-Nan, XIONG Ming. Dynamic Evolution of Outer Radiation Belt Electrons due to Whistler-Mode Chorus[J]. Chin. Phys. Lett., 2009, 26(3): 783-786
[7] SU Zhen-Peng, ZHENG Hui-Nan. Resonant Scattering of Relativistic Outer Zone Electrons by Plasmaspheric Plume Electromagnetic Ion Cyclotron Waves[J]. Chin. Phys. Lett., 2009, 26(12): 783-786
[8] HE Hui-Yong, CHEN Liang-Xu, LI Jiang-Fan. Characteristics of Wave--Particle Interaction in a Hydrogen Plasma[J]. Chin. Phys. Lett., 2008, 25(9): 783-786
[9] ZHENG Hui-Nan, SU Zhen-Peng, XIONG Ming. Pitch Angle Distribution Evolution of Energetic Electrons by Whistler-Mode Chorus[J]. Chin. Phys. Lett., 2008, 25(9): 783-786
[10] SU Zhen-Peng, ZHENG Hui-Nan. Simulation of Resonant Interaction between Energetic Electrons and Whistler-Mode Chorus in the Outer Radiation Belt[J]. Chin. Phys. Lett., 2008, 25(12): 783-786
[11] XIAO Fu-Liang, CHEN Lun-Jin, ZHENG Hui-Nan, WANG Shui, GUO Jun. A Three-Dimensional Ray-Tracing Study of R-X Mode Waves during High Geomagnetic Activity[J]. Chin. Phys. Lett., 2008, 25(1): 783-786
[12] XIAO Fu-Liang, CHEN Liang-Xu, ZHOU Qing-Hua, HE Hui-Yong, WEN Yong-Jun. Bounce-Averaged Acceleration of Energetic Electrons by Whistler Mode Chorus in the Magnetosphere[J]. Chin. Phys. Lett., 2007, 24(1): 783-786
[13] XIAO Fu-Liang, HE Hui-Yong. Energetic Electron Pitch Angle Diffusion due to Whistler Wave during Terrestrial Storms[J]. Chin. Phys. Lett., 2006, 23(1): 783-786
[14] YANG Guo-Tao, WANG Jia-Min, LIU Bing-Mo, CHENG Xue-Wu, WAN Wei-Xing, GONG Shun-Sheng. Contribution of the Atmospheric Dynamics to the Sporadic Sodium Layer Formation[J]. Chin. Phys. Lett., 2002, 19(4): 783-786
Viewed
Full text


Abstract