Chin. Phys. Lett.  2008, Vol. 25 Issue (2): 780-782    DOI:
Original Articles |
In Situ Raman Spectroscopy Study on Dissociation of Methane at High Temperatures and at High Pressures
CHEN Jin-Yang1;JIN Lu-Jiang1;DONG Jun-Ping2;ZHENG Hai-Fei3
1School of Environmental and Chemical Engineering, Shanghai University, Shanghai 2018002School of Sciences, Shanghai University, Shanghai 2004363School of the Earth and Space Sciences, Peking University, Beijing 100871
Cite this article:   
CHEN Jin-Yang, JIN Lu-Jiang, DONG Jun-Ping et al  2008 Chin. Phys. Lett. 25 780-782
Download: PDF(606KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We investigate the stability and dissociation of methane, which is the most abundant organic molecule in the universe, using diamond anvil cell (DAC) with in situ Raman spectroscopy up to 903K and 21GPa. At the temperatures of 793 and 723K and the corresponding pressures of 16.15 and 20.30GPa,
methane dissociates to form carbon `soot' and heavier hydrocarbons
involving C=C and C≡C bonds. However, if the pressure is not very high, methane remains stability up to the highest temperature of 903K of the work. The four symmetric C--H bonds of methane split at high temperatures and at high pressures, and there is at least one phase transition of crystalline symmetry from face centred cubic (fcc) to hexagonal close packed (hcp) before dissociation.
Keywords: 91.67.De      33.20.Fb     
Received: 11 October 2007      Published: 30 January 2008
PACS:  91.67.De (Reactions and phase equilibria)  
  33.20.Fb (Raman and Rayleigh spectra (including optical scattering) ?)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2008/V25/I2/0780
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
CHEN Jin-Yang
JIN Lu-Jiang
DONG Jun-Ping
ZHENG Hai-Fei
[1] Scott H P, Hemley R J, Mao H, Herschbach D R, Fried L E,Howard W M and Bastea S 2004 Proc. Natl. Acad. Sci. USA 101 14023
[2] Gold T and Soter S 1980 Sci. Am. 242 154
[3] Bini R and Pratesi G 1997 Phys. Rev. B 5514800
[4] Nakahata I, Matsui N, Akahama Y and Kawamura H 1999 Chem. Phys. Lett. 302 359
[5] Kader M S A 2002 Chem. Phys. 277 77
[6] Kenney J F, Kutcherov V A, Bendeliani N A and Alekseev V A2002 Proc. Natl. Acad. Sci. USA 99 10976
[7] Ancilotto F, Chiarotti G L, Scandolo S and Tosatti E 1997 Science 275 1288
[8] Culler T S and Schiferl D 1993 J. Phys. Chem. 97 703
[9] Benedetti L R, Nguyen J H, Caldwell W A, Liu H, Kruger Mand Jeanloz R 1999 Science 286 100
[10] Chou I M, Sharma A, Burruss R C, Hemley R J, Goncharov AF, Stern L A and Kirby S H 2001 J. Phys. Chem. A 1054664
[11] Escribano R, Sloan J J, Siddique N, Sze N and Dudev T2001 Vibrational Spectroscopy 26 179
[12] Ferrari A C and Robertson J 2001 Phys. Rev. B 64 075414
Related articles from Frontiers Journals
[1] LIU Xiao-Dong, **, Hagihala Masato, ZHENG Xu-Guang, **, MENG Dong-Dong, GUO Qi-Xin . Raman and Mid-IR Spectral Analysis of the Atacamite-Structure Hydroxyl/Deuteroxyl Nickel Chlorides Ni2(OH/D)3Cl[J]. Chin. Phys. Lett., 2011, 28(8): 780-782
[2] LI Pei-Ning, LIU You-Wen**, MENG Yun-Ji, ZHU Min-Jun . A Multifrequency Cloak with a Single Shell of Negative Index Metamaterials[J]. Chin. Phys. Lett., 2011, 28(6): 780-782
[3] JIANG Xiu-Lan, LI Dong-Fei, SUN Cheng-Lin, LI Zhan-Long, YANG Guang, ZHOU Mi, LI Zuo-Wei, **, GAO Shu-Qin . Relationship between Fermi Resonance and Solvent Effects[J]. Chin. Phys. Lett., 2011, 28(5): 780-782
[4] ZHANG Xia, WAN Song-Ming, YIN Shao-Tang, YOU Jing-Lin. High-Temperature Raman Investigation on Phase Transition of LBO Crystal[J]. Chin. Phys. Lett., 2009, 26(11): 780-782
[5] LI Xiao-Yun, XIA Yu-Xing, HUANG Ju-Ming, ZHAN Li. Diagnosis of Multiple Gases Separated from Transformer Oil Using Cavity-Enhanced Raman Spectroscopy[J]. Chin. Phys. Lett., 2008, 25(9): 780-782
[6] LI Xiao-Yun, XIA Yu-Xing, ZHAN Li, LENG Jiang-Hua. Large Relative Raman Shift for Molecules Adsorbed on Metallic Nano-particles[J]. Chin. Phys. Lett., 2008, 25(6): 780-782
[7] ZHANG Xia, YIN Shao-Tang, WAN Song-Ming, YOU Jing-Lin, CHEN Hui, ZHAO Si-Jie, ZHANG Qing-Li. Raman Spectrum Analysis on the Solid--Liquid Boundary Layer of BGO Crystal Growth[J]. Chin. Phys. Lett., 2007, 24(7): 780-782
[8] FU Yun-Liang, WU Ying-Cai, YUAN Yi-Fang, CHEN Bao-Xue. Raman Spectra of Proton-Exchanged LiNbO3 Optical Waveguides[J]. Chin. Phys. Lett., 2004, 21(7): 780-782
[9] YOU Jing-Lin, JIANG Guo-Chang, HOU Huai-Yu, CHEN Hui, WU Yong-Quan, XU Kuang-Di. An Ab-Initio Calculation of Raman Spectra of Binary Sodium Silicates[J]. Chin. Phys. Lett., 2004, 21(4): 780-782
[10] LIU Ying-Kai, , DONG Yi, WANG Guang-Hou. Low-Frequency and Abnormal Raman Spectrum in SnO2 Nanorods[J]. Chin. Phys. Lett., 2004, 21(1): 780-782
[11] MA Shu-guo, WU Guo-zhen,. A Classical Theory for the Raman Optical Activity[J]. Chin. Phys. Lett., 1998, 15(10): 780-782
[12] HUANG Ya-bin, MO Yu-jun, G. Mattei, M. Pagnnane, XIE Si-shen. Study of C70 Adsorbed on Silver Surface by Surface Enhanced Raman Scattering[J]. Chin. Phys. Lett., 1997, 14(7): 780-782
[13] WANG Hezhou, ZHENG Xiguang, MAO Weidong, YU Zhenxin, GAO Zhaolan. Temporal Behaviours of Stimulated Rayleigh-Wing Scattering at Non- and Quasi-Equilibrium of Orientational Distribution [J]. Chin. Phys. Lett., 1995, 12(9): 780-782
[14] ZHANG Jiatai, WANG Weixing, CHANG Tieqiang. Deducing Plasma Density Profile From Stimulated Raman Scattering Spectrum[J]. Chin. Phys. Lett., 1994, 11(7): 780-782
[15] LI Zuowei, CHANG Tiejun, SUN Xin, PEI Li, GAO Shujin*. Optical Fiber Raman Spectra of CCl4[J]. Chin. Phys. Lett., 1993, 10(7): 780-782
Viewed
Full text


Abstract