Original Articles |
|
|
|
|
Opinion Spreading with Mobility on Scale-Free Networks |
GUO Qiang1;LIU Jian-Guo2,3;WANG Bing-Hong2;ZHOU Tao2,3;CHEN Xing-Wen1;YAO Yu-Hua4 |
1School of Science, Dalian Nationalities University, Dalian 1166002Department of Modern Physics, University of Science and Technology of China, Hefei 2300263Department of Physics, University of Fribourg, CH-1700 Fribourg, Switzerland4School of Life Science, Zhejiang Sci-Tech University, Hangzhou 310018 |
|
Cite this article: |
GUO Qiang, LIU Jian-Guo, WANG Bing-Hong et al 2008 Chin. Phys. Lett. 25 773-775 |
|
|
Abstract A continuum opinion dynamic model is presented based on two rules. The first one considers the mobilities of the individuals, the second one supposes that the individuals update their opinions independently. The results of the model indicate that the bounded confidence εc, separating consensus and incoherent states, of a scale-free network is much smaller than the one of a lattice. If the system can reach the consensus state, the sum of all individuals' opinion change Oc(t) quickly decreases in an exponential form, while if it reaches the incoherent state finally, Oc(t) decreases slowly and has the punctuated equilibrium characteristic.
|
Keywords:
89.75.-k
87.23.Ge
64.60.Cn
|
|
Received: 28 August 2007
Published: 30 January 2008
|
|
|
|
|
|
[1] Candia J 2007 Phys. Rev. E 75 026110 2 [] Stauffer D et al 2005 Phys. Rev. E 72 046128 [3] Lorenz J 2007 arXiv:0707.1762 [4] Rosvall M et al 2007 arXiv:0708.0368 [5] Weidlich W 1991 Phys. Rep. 204 1 [6] Weidlich W 2000 Sociodynamics: A Systematic Approachto Mathematical Modelling in the Social Sciences (Amsterdam:Harwood Academic) [7] Oliveira S M de et al 1999 Non-TraditionalApplications of Computational Statistical Physics (Stuttgart:Teubner) [8] Sznajd-Weron K et al 2000 Int. J. Mod. Phys. C 11 1157 [9] Castellano C et al 2000 Phys. Rev. Lett. 853536 [10] Aleksiejuk A et al 2002 Physica A 310 260 [11] Klemm K et al 2003 Phys. Rev. E 67 026120 [12] Gonz{\'{alez M C et al 2004 Int. J. Mod. Phys. C 15 45 [13] Suchecki K et al 2005 Phys. Rev. E 72 036132 [14] Kuperman M N 2006 Phys. Rev. E 73 046139 [15] Gonz{\'{alez M C et al 2006 Eur. Phys. J. B 49 253 [16] Candia J 2006 Phys. Rev. E 74 031101 [17] Watts D J 1999 Small Worlds (Princeton, NJ:Princeton University Press) [18] Zhou T et al 2007 Phys. Rev. E 76 046115 [19] Zhou T et al 2006 Phys. Rev. E 74 056109 [20] Albert R et al 2002 Rev. Mod. Phys. 74 47;Dorogovtsev S N et al 2003 Evolution of Networks (New York:Oxford University Press); Strogatz S 2003 SYNC---How the Emerges from Chaos in theUniverse (New York: Hyperion) Wang X F 2002 Int. J. Bifurcat. Chaos 12 885 Newman M E J 2003 SIAM Rev. 45 167; BoccalettiS et al 2006 Phys. Rep. 424 175 Newman M E J et al 2006 The Structure and Dynamics ofNetworks (Princeton, NJ: Princeton University Press) [21] Axelrod R 1997 J. Conflict Resolution 41 203 [22] Sznajd -W K et al 2000 Int. J. Mod. Phys. C 11 1157 [23] Deffuant G et al 2000 Adv. Complex Systems 387; Weisbuch G 2004 Eur. Phys. J. B 38 339 [24] Hegselmann R et al 2002 J. Arti. Soc. Social Simul. 5 (3) (paper 2 jasss.soc.surrey.ac.uk) [25] Stauffer D 2003 AIP Conf. Proc. 690 147 [26] Ben-Naim E et al 2003 Physica D 183 190 [27] Fortunato S et al 2005 cond-mat/0501730 [28] Fortunato S 2005 Int. J. Mod. Phys. C 16 259 [29] Hu B et al 2005 Physica A 353 576 [30]Li M et al 2005 Physica A 350 643 [31] Tadi\'{c B et al 2004 Phys. Rev. E 69 036102 [32] Zhao L et al 2005 Phys. Rev. E 71 026125 [33] Yan G et al 2006 Phys. Rev. E 73 046108 [34] Yin C Y et al 2006 Phys. Lett. A 351 220 [35] Pastor-Satorras R and Vespignani A 2001 Phys. Rev.Lett. 86 3200 [36] Yan G et al 2005 Chin. Phys. Lett. 22 510 [37] Zhou T et al 2006 Prog. Nat. Sci. 16 452 [38] Motter A E and Lai Y -C 2002 Phys. Rev. E 66 065102 [39] Goh K I et al 2003 Phys. Rev. Lett. 91 148701 [40] Zhou T and Wang B -H 2005 Chin. Phys. Lett. 22 1072 [41] Zhou T et al 2005 Phys. Rev. E 72 016139 [42] Zhao M et al 2005 Phys. Rev. E 72 057102 [43] Zhou T et al 2006 Phys. Rev. E 73 037101 [44] Duan W Q et al 2005 Chin. Phys. Lett. 22 2137 [45] Fan J et al 2005 Physica A 355 657 [46] Valente A X C N et al 2004 Phys. Rev. Lett. 92 118702 [47] Paul G et al 2004 Eur. Phys. J. B 38 187 [48] Liu J G et al 2005 Mod. Phys. Lett. B 19 785 [49] Liu J G et al 2006 Mod. Phys. Lett. B 20 815 [50] Zhou T et al 2005 Phys. Rev. E 71 046141 [51] Andrade J S et al 2005 Phys. Rev. Lett. 94018702 [52] Dorogovtsev S N et al 2001 Phys. Rev. E 63062101 [53] Holme P and Kim B J 2002 Phys. Rev. E 65065107 [54] Newman M E J 2002 Phys. Rev. Lett. 89 208701 [55] Dorogovtsev S N et al 2002 Phys. Rev. E 65066122 [56] Ravasz E and Barab\'{asi A -L 2003 Phys. Rev. E 67 026112 [57] Jiang P Q et al 2005 Chin. Phys. Lett. 221285 [58] Wang W X et al 2005 Phys. Rev. E 72 046140 [59] Wang W X et al 2005 Phys. Rev. Lett. 94188702 [60] Zhu C P et al 2004 Phys. Rev. Lett. 92 218702 [61] Guo Q et al 2006 Physica A 371 841 [62] Liu J G et al 2006 Physica A 366 578 [63] Liu J G et al 2006 Physica A 371 861 [64] Liu J G et al 2007 Physica A 377 302 [65] Liu J G et al 2006 Chin. Phys. Lett. 23 746 [66] Barab\'{asi A-L and Albert R 1999 Science 286509 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|