Chin. Phys. Lett.  2008, Vol. 25 Issue (2): 711-714    DOI:
Original Articles |
Improved Blue-Green Electrophosphorescence from a Tuning Iridium Complex with Benzyl Group in Polymer Light-Emitting Devices
MA Xiao-Yun1;ZHU Ke-Ming1;WANG Lei3 ;XIAO Fang-Liang1;WEN Zhong-Lin1;ZHU Mei-Xiang1;ZHU Wei-Guo 1,2
1College of Chemistry, Xiangtan University, Xiangtan 4111052Key Lab of Environment-Friendly Chemistry and Application of the Ministry of Education, Xiangtan University, Xiangtan 4111053Institute of Polymer Optoelectronics Materials and Devices, South China University of Technology, Guangzhou 510640
Cite this article:   
MA Xiao-Yun, ZHU Ke-Ming, WANG Lei et al  2008 Chin. Phys. Lett. 25 711-714
Download: PDF(156KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Electroluminescence performances from a tuning biscyclometlated iridium complex with benzyl group are demonstrated in double-layered polymer light-emitting devices (PLEDs) using a blend of poly(9,9-dioctylfluorene) and 2-tert-butylphenyl-5-biphenyl-1,3,4-oxadiazole as a host matrix. Blue-green electrophosphorescent emission with a peak at 521nm and a shoulder at 492nm was observed. The highest luminance efficiency of 4.8cd/A at current density of 0.56mA/cm2 and a maximum luminance of 1944cd/m2 at 217.6mA/cm2 were achieved in the devices at the dopant concentration of 8%. The luminous performance of the devices becomes better with increasing dopant concentrations from 1% → 8%. This implies that the concentration quenching of this iridium complex with benzyl group can be efficiently inhibited
in the devices.
Keywords: 78.60.Fi      78.66.Qn      85.06.Jb     
Received: 10 August 2007      Published: 30 January 2008
PACS:  78.60.Fi (Electroluminescence)  
  78.66.Qn (Polymers; organic compounds)  
  85.06.Jb  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2008/V25/I2/0711
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
MA Xiao-Yun
ZHU Ke-Ming
WANG Lei
XIAO Fang-Liang
WEN Zhong-Lin
ZHU Mei-Xiang
ZHU Wei-Guo
[1] Gong X, Ostrowski J C, Moses D, Bazan G C and Heeger A J2003 Adv. Funct. Mater. 13 439
[2] Yang X H, Neher D, Hertel D and D{\"{aubler T K 2004 Adv. Mater. 16 161
[3] Gong X, Robinson M R, Ostrowski J C, Moses D, Bazan G Cand Heeger A J 2002 Adv. Mater. 14 585
[4] Wu Z L, Xing K Q, Luo C P, Liu Y, Yang Y P, Gan Q, Zhu MX, Jiang C Y, Cao Y and Zhu W G 2006 Chem. Lett. 35 538
[5] Jiang C Y, Yang W, Peng J B, Xiao S and Cao Y 2004 Adv. Mater. 16 537
[6] Hu Z Y, Luo C P, Wang L, Huang F L, Zhu K M, Wang Y F, ZhuM X, Zhu W G and Cao Y 2007 Chem. Phys. Lett. 441 277
[7] Zhang X J, Jiang C Y, Mo Y Q, Xu Y H, Shi H H and Cao Y2006 Appl. Phys. Lett. 88 05116
[8] Mak C S K, Hayer A, Pascu S I, Watkins S E, Holmes A B,Kohler A and Friend R H 2005 Chem. Commun. 4708
[9] Adachi C, Kwong R C, Djurovich P, Adamovich V, Baldo M A,Thompson M E and Forrest S R 2001 Appl. Phys. Lett. 792082
[10] Holmes R J, Forrest S R, Tung Y J, Kwong R C, Brown J J,Garon S and Thompson M E, 2003 Appl. Phys. Lett. 822422
[11] Tsai M H, Lin H W, Su H C, Ke T H, Wu C C, Fang F C, LiaoY L, Wong K T and Wu C I 2006 Adv. Mater. 18 1216
[12] Tsai M H, Hong Y H, Chang C H, Su H C, Wu C C,Matoliukstyte A, Simokaitiene J, Grigalevicius S, Grazulevicius J Vand Hsu C P 2007 Adv. Mater. 19 862
[13] Coppo P, Plummer E A and Cola L D 2004 Chem.Commun. 1774
[14] Yeh S J, Wu M F, Chen C T, Song Y H, Chi Y, Ho M H, Hus SF and Chen C H 2005 Adv. Mater. 17 285
[15] D'Andrade B W, Holmes R J and Forrest S R 2004 Adv.Mater. 16 624
[16] Holmes R J, D'Andrade B W, Forrst S R, Ren X, Li J andThompson M E 2003 Appl. Phys. Lett. 3 3818
[17] Gong X, Ostrowski J C, Oazan G C, Moses D, Heeger A J,Liu M S and Yen A K Y 2003 Adv. Mater. 15 45
[18] Gong X, Moss D, Heeger A J, Liu S and Jen A K Y 2003 Appl. Phys. Lett. 83 183
[19] Chang C Y, Hsieh S N, Wen T C, Guo T F and Cheng C H2006 Chem. Phys. Lett. 418 50
[20] Chan M Y, Lai S L, Kung M K, Lee C S and Lee S T 2004 J. Appl. Phys. 95 5397
[21] Pommerehne J, Vestweber H, Guss W, Mahrt R F,B{\"{assler H, Porsch M and Daub J 1995 Adv. Mater. 7551
Related articles from Frontiers Journals
[1] YIN Yang, RAN Guang-Zhao**, ZHANG Bin, QIN Guo-Gang** . Photo- and Electro-Luminescence at 1.54µm from Er3+ in SiC:Er2O3 Films and Structures[J]. Chin. Phys. Lett., 2011, 28(7): 711-714
[2] LIAN Jia-Rong**, NIU Fang-Fang, LIU Ya-Wei, ZENG Peng-Ju . Improved Hole-Blocking and Electron Injection Using a TPBI Interlayer at the Cathode Interface of OLEDs[J]. Chin. Phys. Lett., 2011, 28(4): 711-714
[3] CHEN Jun, FAN Guang-Han**, PANG-Wei, ZHENG Shu-Wen . Comparison of GaN-Based Light-Emitting Diodes by Using the AlGaN Electron-Blocking Layer and InAlN Electron-Blocking Layer[J]. Chin. Phys. Lett., 2011, 28(12): 711-714
[4] FENG Lie-Feng**, LI Yang, LI Ding, WANG Cun-Da, ZHANG Guo-Yi, YAO Dong-Sheng, LIU Wei-Fang, XING Peng-Fei . Frequency Response of Modulated Electroluminescence of Light-Emitting Diodes[J]. Chin. Phys. Lett., 2011, 28(10): 711-714
[5] SUN Jing**, ZHAO Yi-Kun, WANG Xin-Qiang, REN Quan, CHEN Jing-Wei, ZHANG Guang-Hui, XU Dong, WANG He-Zhou . Nonlinear Optical Studies of [(C4H9)4N][Ni(dmit)2] by Z-Scan Technique[J]. Chin. Phys. Lett., 2011, 28(10): 711-714
[6] LIANG Chun-Jun, ZOU Hui, HE Zhi-Qun, ZHANG Chun-Xiu, LI Dan, WANG Yong-Sheng. Polymer Light-Emitting Diode Using Conductive Polymer as the Anode Layer[J]. Chin. Phys. Lett., 2010, 27(9): 711-714
[7] WANG Wei, HUANG Bei-Ju, DONG Zan, LIU Hai-Jun, ZHANG Xu, GUAN Ning, CHEN Jin, GUO Wei-Lian, NIU Ping-Juan, CHEN Hong-Da. A Low-Voltage Silicon Light Emitting Device in Standard Salicide CMOS Technology[J]. Chin. Phys. Lett., 2010, 27(4): 711-714
[8] LEI Tong, WANG Xiao-Ping, WANG Li-Jun, LV Cheng-Rui, ZHANG Shi, ZHU Yu-Zhuan. Electroluminescence from Multilayered Diamond/CeF3/SiO2 Films[J]. Chin. Phys. Lett., 2010, 27(4): 711-714
[9] ZHANG Li-Li, HU Chun-Lian, WANG Can, LÜ, Hui-Bin, HAN Peng, YANG Guo-Zhen, JIN Kui-Juan. Competition between Radiative Power and Dissipation Power in the Refrigeration Process in Oxide Multifilms[J]. Chin. Phys. Lett., 2010, 27(2): 711-714
[10] DONG Mu-Sen, , WU Xiao-Ming, , HUA Yu-Lin, **, QI Qing-Jin, , YIN Shou-Gen, . Highly Efficient Simplified Organic Light-Emitting Diodes Utilizing F4-TCNQ as an Anode Buffer Layer[J]. Chin. Phys. Lett., 2010, 27(12): 711-714
[11] CHENG Cui-Ran, CHEN Yu-Huan, QIN Da-Shan**, QUAN Wei, LIU Jin-Suo. Inverted Bottom-Emission Organic Light Emitting Diode Using Two n-Doped Layers for the Enhanced Performance[J]. Chin. Phys. Lett., 2010, 27(11): 711-714
[12] JIANG Qing Yun, LI Sheng, Thomas F. George, SUN Xin . Bipolarons in Organic Electroluminescence[J]. Chin. Phys. Lett., 2010, 27(10): 711-714
[13] XIONG Yan, PENG Jun-Biao, WU Hong-Bin, WANG Jian. Improved Performance of Polymer Light-Emitting Diodes with an Electron Transport Emitter by Post-Annealing[J]. Chin. Phys. Lett., 2009, 26(9): 711-714
[14] RUAN Jun, YU Tong-Jun, JIA Chuan-Yu, TAO Ren-Chun, WANGZhan-Guo, ZHANG Guo-Yi. Indium-Induced Effect on Polarized Electroluminescence from InGaN/GaN MQWs Light Emitting Diodes[J]. Chin. Phys. Lett., 2009, 26(8): 711-714
[15] ZHANG Yong, HOU Qiong, NIU Qiao-Li, ZHENG Shu-Wen, LI Shu-Ti, HE Miao, FAN Guang-Han. Efficient White Light Emission Using a Single Copolymer with Red and Green Chromophores on a Conjugated Polyfluorene Backbone Hybridized with InGaN-Based Light-Emitting Diodes[J]. Chin. Phys. Lett., 2009, 26(7): 711-714
Viewed
Full text


Abstract