Original Articles |
|
|
|
|
Luminescence Spectra of YGG:RE3+,Bi3+ RE= Eu and Tb) and Energy Transfer from Bi3+ to RE3+ |
ZHU Nan-Fei1,2; LI Yong-Xiang1;YU Xiao-Feng1,2 |
1The State Key Lab of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 2000502Postgraduate School of the Chinese Academy of Sciences, Beijing 100049 |
|
Cite this article: |
ZHU Nan-Fei, LI Yong-Xiang, YU Xiao-Feng 2008 Chin. Phys. Lett. 25 703-706 |
|
|
Abstract We investigate the luminescence properties of Bi3+ and RE3+ (RE = Tb or Eu) in a Y3Ga5O12 (YGG) host system. The additional doping of Bi3+ can enhance the luminescence of Tb3+ or Eu3+ in this host. Energy transfer from Bi3+ to Tb3+ and Eu3+ is observed and the mechanism of energy transfer is investigated. Mechanism of energy transfer can be explained as electric multipole interaction since the Bi3+ emission band and Tb3+ or Eu3+ excitation band overlaps and the Bi3+ emission intensity decreases while the intensity of Tb3+ or Eu3+ increases with the increase of Tb3+ or Eu3+ concentration. Therefore, Bi3+ ion is a kind of efficient sensitizer to the Tb3+ and Eu3+ activators in the Y3Ga5O12 host.
|
Keywords:
78.55.-m
33.50.Dq
34.70.+e
|
|
Received: 01 January 1900
Published: 30 January 2008
|
|
PACS: |
78.55.-m
|
(Photoluminescence, properties and materials)
|
|
33.50.Dq
|
(Fluorescence and phosphorescence spectra)
|
|
34.70.+e
|
(Charge transfer)
|
|
|
|
|
[1] Kobayashi S and Tanaka S 1996 SID J. 4 157 [2] Yang S, Stoffers S and Zhang F et. al. 1998 Appl.Phys. Lett. 72 158 [3] Wang D J, Wang J L and Li L 2006 Chin. Phys. Lett. 23 2247 [4] Flynn M and Kitai A H 2001 J. Electrochem. Soc. 148 H149 [5] Minami T, Maeno T, Kuroi Y and Takata S 1995 Jpn. J.Appl. Phys. 34 L684 [6] Kang Y C et al. 2000 Mater. Res. Bull. 35 789 [7] Choe J Y et al 2001 J. Lumin. 93 119 [8] Ravichandran D et al 1997 J. Lumin. 71 291 [9] Zhou Y H et al. 2002 Opti. Mater. 20 13 [10] Mathur S et al 2005 Mater. Res. Bull. 40439 [11] Heer S et al 2001 Chem. Phys. Lett. 334 293 [12] Heer S et al 2001 J. Lumin. 94-95 337 [13] Yamagab M et al 1988 J. Lumin. 39 335 [14] Binnemans K and G\"{orller-Walrand C 1997 J. Phys.:Condens. Matter 9 1637 [15] Zhu N F et al 2007 J. Lumin. 122-123 704 [16] Yu M et al 2003 Chem. Phys. Lett. 371 183 [17] Jung K Y and Lee H W 2007 J. Lumin. 126 469 [18] Jia D et al 2003 J. Appl. Phys. 93 148 [19] Dexter D L 1953 J. Chem. Phys. 21 836 [20] Nikl M et al 2005 J. Phys.: Condens. Matter. 17 3367 [21] Setlur A A and Srivastava A M 2006 Opt. Mater. 29 410 [22]Srivastava A M 2002 Mater. Res. Bull. 37 745 [23] Kiliaan H S and Blasse G 1987 Mater. Chem. Phys. 18 155 [24] van de Craats A M and Blasse G 1995 Chem. Phys.Lett. 243 559 [25] Zorenko Y et al 2007 Radiat. Meas. 42 882 [26] Antic-Fidancev E et al 2001 Phys. Rev. B 64195108 [27] Srivastava A M and Beers W W 1999 J. Lumin. 81 293 [28] Srivastava A M et al 1990 J. Electrochem. Soc. 137 2959 [29] Mo L Y et al 1985 J. Electrochem. Soc. 132717 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|