Chin. Phys. Lett.  2008, Vol. 25 Issue (2): 624-627    DOI:
Original Articles |
Weak Nonlinearity of Ablative Rayleigh--Taylor Instability
FAN Zheng-Feng;LUO Ji-Sheng
Department of Fluid Mechanics, Tianjin University, Tianjin 300072
Cite this article:   
FAN Zheng-Feng, LUO Ji-Sheng 2008 Chin. Phys. Lett. 25 624-627
Download: PDF(135KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The weakly nonlinear regime of single mode ablative Rayleigh--Taylor instability is studied, with consideration of preheat effect and the width of the ablation front. The Rayleigh--Taylor linear growth rate agrees well with the direct numerical simulation. For the density perturbation, the amplitude
distribution of the fundamental mode has one peak value whereas those of the second and third harmonics have two and three peak values, respectively. Harmonics generation versus wave number is also given and it is close to the result of direct numerical simulation.
Keywords: 52.35.Py      47.20.Ma     
Received: 31 May 2007      Published: 30 January 2008
PACS:  52.35.Py (Macroinstabilities (hydromagnetic, e.g., kink, fire-hose, mirror, ballooning, tearing, trapped-particle, flute, Rayleigh-Taylor, etc.))  
  47.20.Ma (Interfacial instabilities (e.g., Rayleigh-Taylor))  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2008/V25/I2/0624
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
FAN Zheng-Feng
LUO Ji-Sheng
[1] Taylor G I 1950 Proc. Roy. Soc. A 201 192
[2] Kull H J 1989 Phys. Fluids B 1 170
[3] Takabe H, Mima K, Montierth L and Morse R L 1985 Phys. Fluids 28 3676
[4] Wouchuk J G and Piriz A R 1995 Phys. Plasmas 2493
[5] Goncharov V N, Betti R, McCrory R L, Sorotokin P andVerdon C P 1996 Phys. Plasmas 3 1402
[6] Betti R, Goncharov V N, McCrory R L, Sorotokin P andVerdon C P 1996 Phys. Plasmas 3 2122
[7] Betti R, Goncharov V N, McCrory R L and Verdon C P 1998 Phys. Plasmas 5 1446
[8] Ye W H, Zhang W Y and He X T 2000 Acta Phys. Sin. 49 762 (in Chinese)
[9] Ye W H, Zhang W Y and He X T 2002 Phys. Rev. E 65 057401
[10] Jacobs J W and Catton I 1988 J. Fluid Mech. 187 329
[11] Hasegawa S and Nishihara K 1995 Phys. Plasmas 2 4606
[12] Sanz J, Ram{\'\irez J, Ramis R, Betti R and Town R P J2002 Phys. Rev. Lett. 89 195002
[13] Garnier J, Raviart P A, Cherfils-Cl{\'{erouin C andMasse L 2003 Phys. Rev. Lett. 90 1850003
[14] Garnier J, Masse L 2005 Phys. Plasmas 12062707
[15] Lindl J D, Amendt P, Berger R L, Glendinning S G, GlenzerS H, Haan S W, Kauffman R L, Landen O L and Suter L J 2004 Phys. Plasmas 11 339
[16] Glendinning S G, Dixit S N, Hammel B A, Kalantar D H, KeyM H, Kilkenny J D, Knauer J P, Pennington D M, Remington B A,Wallace R J and Weber S V 1997 Phys. Rev. Lett. 78 3318
[17] Shigemori K, Azechi H, Nakai M, Honda M, Meguro K,Miyanaga N, Takabe H and Mima K 1997 Phys. Rev. Lett. 78250
[18] Honda M 1998 PhD Dissertation (Osaka University)
[19] Kull H J and Anisimov S I 1986 Phys. Fluids 29 2067
Related articles from Frontiers Journals
[1] CHEN Shao-Yong, WANG Zhong-Tian, TANG Chang-Jian. Excitation of Internal Kink Mode by Circulating Supra-thermal Electrons[J]. Chin. Phys. Lett., 2012, 29(2): 624-627
[2] XU Tao**, HU Qi-Ming, HU Xi-Wei, YU Qing-Quan . Locking of Tearing Modes by the Error Field[J]. Chin. Phys. Lett., 2011, 28(9): 624-627
[3] ZHANG Xu**, LIU Jin-Hong, Jonathan W. N. . A Numerical Study of Temporal Mixing Layer with Three-Dimensional Mortar Spectral Element Method[J]. Chin. Phys. Lett., 2011, 28(6): 624-627
[4] HE Yong**, HU Xi-Wei, JIANG Zhong-He . Similar Rayleigh–Taylor Instability of Shock Fronts Perturbed by Corrugated Interfaces[J]. Chin. Phys. Lett., 2011, 28(5): 624-627
[5] TIAN Bao-Lin, ZHANG Xin-Ting, QI Jin**, WANG Shuang-Hu . Effects of a Premixed Layer on the Richtmyer–Meshkov Instability[J]. Chin. Phys. Lett., 2011, 28(11): 624-627
[6] JI Xiao-Quan, YANG Qing-Wei, LIU Yi, ZHOU Jun, FENG Bei-Bin, YUAN Bao-Shan. First Observation of Neoclassical Tearing Modes in the HL-2A Tokamak[J]. Chin. Phys. Lett., 2010, 27(6): 624-627
[7] PENG Jie, ZHU Ke-Qin. Role of Viscosity Stratification and Insoluble Surfactant in Instability of Two-Layer Channel Flow[J]. Chin. Phys. Lett., 2010, 27(4): 624-627
[8] WANG Li-Feng, YE Wen-Hua, , LI Ying-Jun. Two-Dimensional Rayleigh-Taylor Instability in Incompressible Fluids at Arbitrary Atwood Numbers[J]. Chin. Phys. Lett., 2010, 27(2): 624-627
[9] WANG Li-Feng, YE Wen-Hua, , LI Ying-Jun. Numerical Simulation of Anisotropic Preheating Ablative Rayleigh-Taylor Instability[J]. Chin. Phys. Lett., 2010, 27(2): 624-627
[10] G. A. Hoshoudy . Quantum Effects on Rayleigh–Taylor Instability of Incompressible Plasma in a Vertical Magnetic Field[J]. Chin. Phys. Lett., 2010, 27(12): 624-627
[11] YE Wen-Hua, **, WANG Li-Feng, , HE Xian-Tu, . Jet-Like Long Spike in Nonlinear Evolution of Ablative Rayleigh–Taylor Instability[J]. Chin. Phys. Lett., 2010, 27(12): 624-627
[12] ZHANG Xu, TAN Duo-Wang. Direct Numerical Simulation of the Rayleigh-Taylor Instability with the Spectral Element Method[J]. Chin. Phys. Lett., 2009, 26(8): 624-627
[13] WANG Li-Feng, YE Wen-Hua, , FAN Zheng-Feng, XUE Chuang, LI Ying-Jun. A Weakly Nonlinear Model for Kelvin-Helmholtz Instability in Incompressible Fluids[J]. Chin. Phys. Lett., 2009, 26(7): 624-627
[14] LI Zhang-Guo, LIU Qiu-Sheng, LIU Rong, HU Wei, DENG Xin-Yu. Influence of Rayleigh-Taylor Instability on Liquid Propellant Reorientation in a Low-Gravity Environment[J]. Chin. Phys. Lett., 2009, 26(11): 624-627
[15] WANG Li-Feng, YE Wen-Hua, , FAN Zheng-Feng, LI Ying-Jun. Multimode Coupling Theory for Kelvin-Helmholtz Instability in Incompressible Fluid[J]. Chin. Phys. Lett., 2009, 26(1): 624-627
Viewed
Full text


Abstract