Chin. Phys. Lett.  2008, Vol. 25 Issue (2): 593-596    DOI:
Original Articles |
Thermal Conductivity Measurement of Submicron-Thick Aluminium Oxide Thin Films by a Transient Thermo-Reflectance Technique
BAI Su-Yuan1,2;TANG Zhen-An1;HUANG Zheng-Xing1;YU Jun1;WANG Jia-Qi1
1Department of Electronic Engineering, Dalian University of Technology, Dalian 1160242School of Physics and Electronic Technology, Liaoning Normal University, Dalian 116029
Cite this article:   
BAI Su-Yuan, TANG Zhen-An, HUANG Zheng-Xing et al  2008 Chin. Phys. Lett. 25 593-596
Download: PDF(299KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Thermal conductivity of submicron-thick aluminium oxide thin films prepared by middle frequency magnetron sputtering is measured using a transient thermo-reflectance technique. A three-layer model based on transmission line theory and the genetic algorithm optimization method are employed to obtain the thermal conductivity of thin films and the interfacial thermal resistance. The results show that the average thermal conductivity of 330--1000nm aluminium oxide thin films is 3.3Wm-1K-1 at room temperature. No significant thickness dependence is found. The uncertainty of the measurement is less than 10%.
Keywords: 44.10.+i      66.70.-f     
Received: 27 September 2007      Published: 30 January 2008
PACS:  44.10.+i (Heat conduction)  
  66.70.-f (Nonelectronic thermal conduction and heat-pulse propagation in solids;thermal waves)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2008/V25/I2/0593
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
BAI Su-Yuan
TANG Zhen-An
HUANG Zheng-Xing
YU Jun
WANG Jia-Qi
[1] Lee S M and Cahill D G 1997 J. Appl. Phys. 812590
[2] Kading O W, Skurk H and Goodson K E 1994 Appl. Phys.Lett. 65 1629
[3] Hatta I, Sasuga Y, Kato R and Maesono A 1985 Rev.Sci. Instrum. 56 1643
[4] Huang Z X, Tang Z A, Xu Z Q, Ding H T and Gu Y Q 2004 Chin. Phys. Lett. 21 713
[5] Okuda M and Ohkubo S 1992 Thin Solid Film 213176
[6] Ujihara K 1972 J. Appl. Phys. 43 2376
[7] Chen G and Hui P 1999 Thin Solid Films 339 58
[8] Zhao Y M, Chen G and Wang S Z 2004 Thin Solid Films 450 352
[9] Stehfest H 1970 Commun. ACM 13 47
[10] Stark I, Stordeur M and Syrowatka F 1992 Thin SolidFilms 226 185
[11] Lee S M and Cahill D G 1995 Phys. Rev. B 52253
[12] Kato R, Maesono A and Tye R P 2001 Int. J.Thermophys. 22 617
[13] Behkam B, Yang Y and Asheghi M 2005 Int. J. HeatMass Trans. 48 2023
Related articles from Frontiers Journals
[1] LIU Jing,FENG Shi-Wei**,ZHANG Guang-Chen,ZHU Hui,GUO Chun-Sheng,QIAO Yan-Bin,LI Jing-Wan. A Novel Method for Measuring the Temperature in the Active Region of Semiconductor Modules[J]. Chin. Phys. Lett., 2012, 29(4): 593-596
[2] T. Hayat, **, S. Hina, Awatif A. Hendi . Peristaltic Motion of Power-Law Fluid with Heat and Mass Transfer[J]. Chin. Phys. Lett., 2011, 28(8): 593-596
[3] CHEN Liang**, ZHANG Wan-Rong, XIE Hong-Yun, JIN Dong-Yue, DING Chun-Bao, FU Qiang, WANG Ren-Qing, XIAO Ying, ZHAO Xin . Restabilizing Mechanisms after the Onset of Thermal Instability in Bipolar Transistors[J]. Chin. Phys. Lett., 2011, 28(7): 593-596
[4] XU Wen, CHEN Wei-Zhong**, TAO Feng, . Thermal Rectification in Graded Nonlinear Transmission Lines[J]. Chin. Phys. Lett., 2011, 28(12): 593-596
[5] LIU Qing-Nian, MENG Song-He, JIANG Chi-Ping, SONG Fan. Critical Biot's number for Determination of the Sensitivity of Spherical Ceramics to Thermal Shock[J]. Chin. Phys. Lett., 2010, 27(8): 593-596
[6] GONG Yue-Feng, SONG Zhi-Tang, LING Yun, LIU Yan, LI Yi-Jin, FENG Song-Lin. Three-Dimensional Finite Element Simulations for the Thermal Characteristics of PCRAMs with Different Buffer Layer Materials[J]. Chin. Phys. Lett., 2010, 27(8): 593-596
[7] XIN Xiao-Feng, CHEN Cheng, WANG Bo-Fu, MA Dong-Jun, SUN De-Jun. Local Heating Effect of Flow Past a Circular Cylinder[J]. Chin. Phys. Lett., 2010, 27(4): 593-596
[8] CHEN Zhao-Jiang, ZHANG Shu-Yi. Thermal Depth Profiling Reconstruction by Multilayer Thermal Quadrupole Modeling and Particle Swarm Optimization[J]. Chin. Phys. Lett., 2010, 27(2): 593-596
[9] BAI Su-Yuan, TANG Zhen-An, HUANG Zheng-Xing, Yu Jun, WANG Jing, LIU Gui-Chang. Preparation and Thermal Characterization of Diamond-Like Carbon Films[J]. Chin. Phys. Lett., 2009, 26(7): 593-596
[10] LI Hai-Bin, NIE Qing-Miao, XIN Xiao-Tian. Asymmetric Heat Conduction in One-Dimensional Hard-Point Model with Mass Gradient[J]. Chin. Phys. Lett., 2009, 26(7): 593-596
[11] GONG Yue-Feng, SONG Zhi-Tang, LING Yun, LIU Yan, FENG Song-Lin. Simulation of SET Operation in Phase-Change Random Access Memories with Heater Addition and Ring-Type Contactor for Low-Power Consumption by Finite Element Modeling[J]. Chin. Phys. Lett., 2009, 26(11): 593-596
[12] LI Yu-Hua, QU Wei, FENG Jian-Chao. Temperature Dependence of Thermal Conductivity of Nanofluids[J]. Chin. Phys. Lett., 2008, 25(9): 593-596
[13] ZHANG Xing, TAKAHASHI Koji, FUJII Motoo. Charge and Heat Transport in Polycrystalline Metallic Nanostructures[J]. Chin. Phys. Lett., 2008, 25(9): 593-596
[14] GONG Yue-Feng, LING Yun, SONG Zhi-Tang, FENG Song-Lin. Simulation of Phase-Change Random Access Memory with Ring-Type Contactor for Low Reset Current by Finite Element Modelling[J]. Chin. Phys. Lett., 2008, 25(9): 593-596
[15] WANG Xin-Jun, LIU Jing-Feng, LI Shui. Low-Temperature Thermal Conductance in Superlattice Nanowire with Structural Defect[J]. Chin. Phys. Lett., 2008, 25(6): 593-596
Viewed
Full text


Abstract