Chin. Phys. Lett.  2008, Vol. 25 Issue (2): 566-569    DOI:
Original Articles |
Quantum Size Effect of Inner Cladding Fibres with InP Nano Thin Films
WANG Jin;ZHANG Ru;GUAN Li-Ming
Key Laboratory of Optical Communication and Lightwave Technologies (Ministry of Education), School of Sciences, Beijing University of Posts and Telecommunications, Beijing 100876
Cite this article:   
WANG Jin, ZHANG Ru, GUAN Li-Ming 2008 Chin. Phys. Lett. 25 566-569
Download: PDF(130KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Optical amplified characteristics of inner cladding fibres with InP thin films are tested. The results indicate that this kind of fibres exhibit better optical
amplification, which is advantageous for short lengths of fibres. The amplification coefficients of per unit length are 1.40--5.12dB/m at the wave band from 906 to 1044nm, 1.40--15.35dB/m from 1080 to 1491nm, and 1.86--7.44dB/m from 1524 to 1596nm. Based on the hydrogen atomic model, we calculate the comparative size of the InP particle aB=8.313nm. The result
displays the quantum size effect. By calculating the change of the energy band of particles with different sizes, the experimental data are explained by quantum size effect.
Keywords: 42.81.Bm      42.50.Gy     
Received: 04 July 2007      Published: 30 January 2008
PACS:  42.81.Bm (Fabrication, cladding, and splicing)  
  42.50.Gy (Effects of atomic coherence on propagation, absorption, and Amplification of light; electromagnetically induced transparency and Absorption)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2008/V25/I2/0566
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
WANG Jin
ZHANG Ru
GUAN Li-Ming
[1] John F D, Russell H and Kim J S 2001 Proc. SPIE 4216 62
[2] Tong L M, Lou J Y, Ye Z Z, Geoff T S and Eric M 2005 Nanotechnology 16 1445
[3] Zhang R, Guan L M and LEE L G 2007 Chin. Phys. Lett. 24 998
[4] Guo X Y and Wang T Y 2004 Proc. SPIE 5623 886
[5] Chen J Z and Liu J H 2006 Introduction toNanomaterials Science (Beijing: Higher Education Press) p 90 (inChinese)
[6] Brus L E 1984 Chem. Phys. 80 4403
[7] Kayanuma Y 1988 Phys. Rev. B 38 9797
[8] Zhu J et al. 2003 Nano-device and Materials (Beijing:Tsinghua University Press) p 11 (in Chinese)
[9] Zhang R and Guan L M 2007 J. Atom. Mol. Phys. 24 313
[10] Tang A W, Teng F, Wang Y M, Zhou Q C and Wang Y S 2005 Chin. J. Liquid Cryst. Displays 20 302
[11] Wang K X, Pang F F and Wang T Y 2007 Chin. J.Lasers 34 398
Related articles from Frontiers Journals
[1] LIU Cheng-Xiang, ZHANG Li, WU Xu, RUAN Shuang-Chen. High-Stability Superfluorescent Fiber Source Based on an Er3+-Doped Photonic Crystal Fiber[J]. Chin. Phys. Lett., 2012, 29(6): 566-569
[2] WANG Chun-Fang, BAI Yan-Feng, GUO Hong-Ju, CHENG Jing. Beam Splitting in Induced Inhomogeneous Media[J]. Chin. Phys. Lett., 2012, 29(6): 566-569
[3] HU Zheng-Feng**,LIN Jin-Da,DENG Jian-Liao,HE Hui-Juan,WANG Yu-Zhu. Gain and Absorption of a Probe Light in an Open Tripod Atomic System[J]. Chin. Phys. Lett., 2012, 29(5): 566-569
[4] DING Dong-Sheng, ZHOU Zhi-Yuan, SHI Bao-Sen, ZOU Xu-Bo, GUO Guang-Can. Two-Photon Atomic Coherence Effect of Transition 5S1/2–5P3/2–4D5/2(4D3/2) of 85Rb atoms[J]. Chin. Phys. Lett., 2012, 29(2): 566-569
[5] LI Zhong-Hua, LI Yuan, DOU Ya-Fang, GAO Jiang-Rui, ZHANG Jun-Xiang**. Comparison of the Noise Properties of Squeezed Probe Light in Optically Thick and Thin Quantum Coherence Media for Weak and Strong Coupling Lights[J]. Chin. Phys. Lett., 2012, 29(1): 566-569
[6] XU Qing, HU Xiang-Ming** . Nonadiabatic Effects of Atomic Coherence on Laser Intensity Fluctuations in Electromagnetically Induced Transparency[J]. Chin. Phys. Lett., 2011, 28(7): 566-569
[7] LI Pei-Ning, LIU You-Wen**, MENG Yun-Ji, ZHU Min-Jun . A Multifrequency Cloak with a Single Shell of Negative Index Metamaterials[J]. Chin. Phys. Lett., 2011, 28(6): 566-569
[8] FU Yu-Xin, ZHAO Jin-Yan, SONG Yue, DAI Guo-Xian, HUO Shu-Li, ZHANG Yan-Peng** . Polarized Spatial Splitting of Four-Wave Mixing Signal in Multi-Level Atomic Systems[J]. Chin. Phys. Lett., 2011, 28(4): 566-569
[9] SONG Yue, HUO Shu-Li, LI Pei-Ying, SANG Su-Ling, WANG Zhi-Guo**, ZHANG Yan-Peng** . Interplay of Coexisting Odd-Order Wave Mixings in a Five-Level Atomic System[J]. Chin. Phys. Lett., 2011, 28(2): 566-569
[10] HUANG Xian-Shan, LIU Hai-Lian** . Spontaneous Emission Spectrum of a Λ-Typed Atom in a Coherent Photonic Reservoir[J]. Chin. Phys. Lett., 2011, 28(12): 566-569
[11] ZHANG Ru-Yi, LI Liang, LI Jin, LI Ning, WU Zhen-Kun, LIU Hua, WANG Zhi-Guo, ZHENG Huai-Bin, ZHANG Yan-Peng** . Seven Odd-Order Multi-Wave Mixing Spectra in a Five-Level Atomic System[J]. Chin. Phys. Lett., 2011, 28(10): 566-569
[12] SHU Jing** . Electromagnetically Induced Transparency in an Optomechanical System[J]. Chin. Phys. Lett., 2011, 28(10): 566-569
[13] CHEN Ru-Lin, YUAN Chen-Zhi, WANG Zhi-Guo, NIE Zhi-Qiang, LI Yuan-Yuan, ZHANG Yan-Peng. Enhancement and Suppression of Four-Wave Mixing in a Four-Level Atomic System[J]. Chin. Phys. Lett., 2010, 27(7): 566-569
[14] DUAN Yu-Wen, ZHANG Ru, WANG Jin, CHEN Xi, ZHONG Kun. Suppercontinuum Generation in InP Nano Inner Cladding Fibers[J]. Chin. Phys. Lett., 2010, 27(5): 566-569
[15] HU Zhen-Yan, LI Lu-Ming, CHEN Pei-Rong, SUN Xin. Residual Doppler Effect on Electromagnetically Induced Transparency in a Zeeman Sublevel System[J]. Chin. Phys. Lett., 2010, 27(5): 566-569
Viewed
Full text


Abstract