Chin. Phys. Lett.  2008, Vol. 25 Issue (2): 517-520    DOI:
Original Articles |
Truncated States Obtained by Iteration
W. B. Cardoso1;N. G. de Almeida2
1Instituto de Fisica, Universidade Federal de Goias, 74.001-970, Goiania (GO), Brazil 2Nucleo de Pesquisas em Fisica, Universidade Catolica de Goia s, 74.605-220, Goiania (GO), Brazil.
Cite this article:   
W. B. Cardoso, N. G. de Almeida 2008 Chin. Phys. Lett. 25 517-520
Download: PDF(156KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We introduce the concept of truncated states obtained via iterative processes (TSI) and study its statistical features, making an analogy with dynamical systems theory (DST). As a specific example, we have studied TSI for the
doubling and the logistic functions, which are standard functions in studying chaos. TSI for both the doubling and logistic functions exhibit certain similar patterns when their statistical features are compared from the point of view of DST.
Keywords: 42.50.-p      42.65.Sf     
Received: 01 January 1900      Published: 30 January 2008
PACS:  42.50.-p (Quantum optics)  
  42.65.Sf (Dynamics of nonlinear optical systems; optical instabilities, optical chaos and complexity, and optical spatio-temporal dynamics)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2008/V25/I2/0517
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
W. B. Cardoso
N. G. de Almeida
[1] Bennett C H et al 1993 Phys. Rev. Lett. 70 1895
[2] Kane B E 1998 Nature 393 143
[3] Pellizzari T 1997 Phys. Rev. Lett. 79% 5242
[4] Gisin N et al. 2002 Rev. Mod. Phys. 74145
[5] Bjork G and Sanchez-Soto L L 2001 Phys. Rev.Lett. 86 4516 Mutzel M et al 2002 Phys. Rev. Lett. 88083601
[6] Zurek W H 1991 Phys. Today 44 36 Gerry C C and Knight P L 1997 Am. J. Phys. 65 964 Varcoe B T H et al 2000 Nature 403 743
[7] Raimond J M et al 1996 Phys. Rev. Lett. 791964; Osnaghi S et al 2001 Phys. Rev. Lett. 87 37902
[8] Brune M et al 1996 Phys. Rev. Lett. 77 4887
[9] Bennett C H and Vicenzo D P 2000 Nature 404247 Ekert A K 1991 Phys. Rev. Lett. 67 661
[10] Narozhny N B et al 1981 Phys. Rev. A 23 236 Rempe G et al 1987 Phys. Rev. Lett. 58 353
[11] Poyatos J F et al 1996 Phys. Rev. Lett. 774728
[12] Barnett S M and Pegg D T 1996 Phys. Rev. Lett. 76 4148
[13] Serra R M et al 2000 Phys. Rev. A 62 43810
[14] Devaney R L 1989 An Introduction to ChaoticDynamical Systems 2nd edn (Redwood City, CA: Addison-Wesley)
[15] Ohya M 1998 Int. J. Theor. Phys. 37 495
[16] Dodonov V V 2002 J. Opt. B 4 R1
[17] Mandel L and Wolf E 1995 Optical Coherence andQuantum Optics (Cambridge: Cambridge University Press)
[18] Walls D F and Milburn G J 1994 Quantum Optics(Berlin: Springer)
[19] Serra R M et al 2001 Phys. Rev. A 63 053803
[20] Vogel k 1993 Phys. Rev. Lett. 71 1816 Moussa M H Y and Baseia B 1998 Phys. Lett. A 238223
[21] Dakna M et al 1999 Phys. Rev. A 59 1658
[22] Cardoso W B and de Almeida N G 2006 Phys. Lett. A 356 104
Related articles from Frontiers Journals
[1] LIU Kui, CUI Shu-Zhen, YANG Rong-Guo, ZHANG Jun-Xiang, GAO Jiang-Rui. Experimental Generation of Multimode Squeezing in an Optical Parametric Amplifier[J]. Chin. Phys. Lett., 2012, 29(6): 517-520
[2] ZHOU Jun,SONG Jun,YUAN Hao,ZHANG Bo. The Statistical Properties of a New Type of Photon-Subtracted Squeezed Coherent State[J]. Chin. Phys. Lett., 2012, 29(5): 517-520
[3] HUANG Xi,QIN Cui,YU Yu,ZHANG Zheng,ZHANG Xin-Liang**. Single- and Dual-Channel DPSK Signal Amplitude Regeneration Based on a Single Semiconductor Optical Amplifier[J]. Chin. Phys. Lett., 2012, 29(5): 517-520
[4] CHEN Wei,MENG Zhou**,ZHOU Hui-Juan,LUO Hong. Effects of Input Spectra on the Threshold of Modulation Instability in a Single-Mode Fiber[J]. Chin. Phys. Lett., 2012, 29(4): 517-520
[5] ZHAO Guang-Zhen, XIAO Xiao-Sheng, MEI Jia-Wei, YANG Chang-Xi. Multiple Dissipative Solitons in a Long-Cavity Normal-Dispersion Mode-Locked Yb-Doped Fiber Laser[J]. Chin. Phys. Lett., 2012, 29(3): 517-520
[6] LIU Yang, WU Jing-Hui, SHI Bao-Sen, GUO Guang-Can. Realization of a Two-Dimensional Magneto-optical Trap with a High Optical Depth[J]. Chin. Phys. Lett., 2012, 29(2): 517-520
[7] HU Xin, LIU Gang-Qin, XU Zhang-Cheng, PAN Xin-Yu. Influence of Microwave Detuning on Ramsey Fringes of a Single Nitrogen Vacancy Center Spin in Diamond[J]. Chin. Phys. Lett., 2012, 29(2): 517-520
[8] WANG He-Lin, YANG Ai-Jun**, LENG Yu-Xin, WANG Cheng . Modified Raman Response Model and Supercontinuum Generation in Flat Dispersion Photonic Crystal Fiber with Two-Zero Dispersion Wavelengths[J]. Chin. Phys. Lett., 2011, 28(3): 517-520
[9] XU Ming**, ZHOU Zhen, PU Xiao, JI Jian-Hua, YANG Shu-Wen . Phase Noise Monitor and Reduction by Parametric Saturation Approach in Phase Modulation Systems[J]. Chin. Phys. Lett., 2011, 28(2): 517-520
[10] WANG Ji-Suo, **, MENG Xiang-Guo, FAN Hong-Yi . A Family of Generalized Wigner Operators and Their Physical Meaning as Bivariate Normal Distribution[J]. Chin. Phys. Lett., 2011, 28(10): 517-520
[11] CHEN Zhi-Hua**, LIN Xiu-Min . Generating Entangled States of Multilevel Atoms through a Selective Atom-Field Interaction[J]. Chin. Phys. Lett., 2011, 28(1): 517-520
[12] WANG Bing**, WU Xiu-Qing, CHENG Dong-Chao . Relaxation Time for an Optical Bistable System Subjected to Color Noises[J]. Chin. Phys. Lett., 2011, 28(1): 517-520
[13] XIANG Shui-Ying**, PAN Wei, YAN Lian-Shan, LUO Bin, ZOU Xi-Hua, JIANG Ning, WEN Kun-Hua . Time-Delay Signature of Chaotic Vertical-Cavity Surface-Emitting Lasers with Polarization-Rotated Optical Feedback[J]. Chin. Phys. Lett., 2011, 28(1): 517-520
[14] MA Shan-Jun, XU Xue-Xiang. A New Approach for Constructing New Coherent-Entangled State Representations[J]. Chin. Phys. Lett., 2010, 27(9): 517-520
[15] XIANG Shao-Hua, WEN Wei. Two Methods to Dynamics of Cavityless Optomechanical Systems[J]. Chin. Phys. Lett., 2010, 27(8): 517-520
Viewed
Full text


Abstract