Chin. Phys. Lett.  2008, Vol. 25 Issue (2): 433-435    DOI:
Original Articles |
Gauge Model Based on Group G×SU(2)
ZET Gheorghe1;MANTA Vasile2;POPA Camelia3
1Department of Physics, Gh. Asachi Technical University, Iasi, Romania2Department of Computers, Gh. Asachi Technical University, Iasi, Romania3Faculty of Physics, Al. I. Cuza University, Iasi, Romania
Cite this article:   
ZET Gheorghe, MANTA Vasile, POPA Camelia 2008 Chin. Phys. Lett. 25 433-435
Download: PDF(94KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We present a model of gauge theory based on the symmetry group G×SU(2) where G is the gravitational gauge group and SU(2) is the internal group of
symmetry. We employ the spacetime of four-dimensional Minkowski, endowed with spherical coordinates, and describe the gauge fields by gauge potentials. The corresponding strength field tensors are calculated and the field equations are written. A solution of these equations is obtained for the case that the gauge potentials have a particular form with spherical symmetry. The solution for the gravitational potentials induces a metric of Schwarzschild type on the gravitational gauge group space.
Keywords: 12.10.-g      04.20.Cv      11.15.-q     
Received: 21 May 2007      Published: 30 January 2008
PACS:  12.10.-g (Unified field theories and models)  
  04.20.Cv (Fundamental problems and general formalism)  
  11.15.-q (Gauge field theories)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2008/V25/I2/0433
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZET Gheorghe
MANTA Vasile
POPA Camelia
[1] Cheng T P and Li L F 1984 Gauge Theory of ElementaryParticle Physics (Oxford: Clarendon) p 230
[2] Utiyama R 1956 Phys. Rev. 101 1597
[3] Sciama D W 1964 Rev. Mod. Phys. 36 463
[4] Sciama D W 1964 Rev. Mod. Phys. 36 1103
[5] Kibble T W B 1961 J. Math. Phys. 2 212
[6] Blagojevic M 2003 Three Lectures on PoincareGauge Theory arXiv:gr qc/0302040\qquad
[7] Zet G, Manta V and Babeti S 2003 Int. J. Mod. Phys.C 14 41
[8] Gronwald F 1997 Int. J. Mod. Phys. D 6 263
[9] Wiesendanger C 1996 Class. Quant. Grav. 13 681(arXiv:gr-qc/9505049)
[10] Manta V and Zet G 2001 Int. J. Mod. Phys. C12 801
[11] Blagojevic M 2002 Gravitation and GaugeSymmetries (London: Institute of Physics Publishing) p 42
[12] Landau L and Lifschitz F 1966 Theorie du Champ(Moscou: Ed. Mir) p 91
[13] Wiesendanger C 1996 Class. Quant. Grav. 13681
[14] Bais F A and Russel R J 1975 Phys. Rev. D 112692
[15] Wu N 2002 Commun. Theor. Phys. 38 151
[16] Wu N 2004 Commun. Theor. Phys. 42 543
[17] Wu N 2003 Commun. Theor. Phys. 39 671
[18] Zet G, Oprisan C D and Babeti S 2004 Int. J. Mod.Phys. C 15 1031
[19] Zet G, Manta V, Oancea S, Radinschi I and Ciobanu B 2006 Math. Comput. Mod. 43 458
[20] Felsager B 1981 Geometry, Particles and Fields(Odense: Odense University Press) p 381
[21] De Witt B S 1969 Dynamical Theory of Groups andFields (Amsterdam: North-Holland)
[22] Zet G, Popa C and Partenie D 2007 Commun. Theor.Phys. 47 843
Related articles from Frontiers Journals
[1] K. Fakhar, A. H. Kara. The Reduction of Chazy Classes and Other Third-Order Differential Equations Related to Boundary Layer Flow Models[J]. Chin. Phys. Lett., 2012, 29(6): 433-435
[2] HUANG Chao-Guang,**,TIAN Yu,WU Xiao-Ning,XU Zhan,ZHOU Bin. New Geometry with All Killing Vectors Spanning the Poincaré Algebra[J]. Chin. Phys. Lett., 2012, 29(4): 433-435
[3] Ciprian Dariescu, Marina-Aura Dariescu**. Chiral Fermion Conductivity in Graphene-Like Samples Subjected to Orthogonal Fields[J]. Chin. Phys. Lett., 2012, 29(1): 433-435
[4] ZHU Yin . Measurement of the Speed of Gravity[J]. Chin. Phys. Lett., 2011, 28(7): 433-435
[5] ZOU De-Cheng, YANG Zhan-Ying**, YUE Rui-Hong** . Thermodynamics of Slowly Rotating Charged Black Holes in Anti-de Sitter Einstein–Gauss–Bonnet Gravity[J]. Chin. Phys. Lett., 2011, 28(2): 433-435
[6] NI Jun . Unification of General Relativity with Quantum Field Theory[J]. Chin. Phys. Lett., 2011, 28(11): 433-435
[7] Salah Eddine Ennadifi**, Adil Belhaj, El Hassan Saidi, . Fermion Mass Hierarchies in Singlet-Extended Minimal-Supersymmetric-Standard-Model Quivers[J]. Chin. Phys. Lett., 2011, 28(11): 433-435
[8] HE Xiao-Gang, , MA Bo-Qiang,. Black Holes and Photons with Entropic Force[J]. Chin. Phys. Lett., 2010, 27(7): 433-435
[9] ZHANG Xiu-Ming, DUAN Yi-Shi. The Topological Structure of the SU(2) Chern-Simons Topological Current in the Four-Dimensional Quantum Hall Effect[J]. Chin. Phys. Lett., 2010, 27(7): 433-435
[10] LIU Liao. Cosmological Gravitational Wave in de Sitter Spacetime[J]. Chin. Phys. Lett., 2010, 27(2): 433-435
[11] N. Ibotombi Singh, S. Kiranmla Chanu, S. Surendra Singh. Cosmological Models with Time Dependent G and Λ Coupling Scalars[J]. Chin. Phys. Lett., 2009, 26(6): 433-435
[12] GONG Tian-Xi, WANG Yong-Jiu. Orbital Precession Effect in the Reissner-Nordström Field with a Global Monopole[J]. Chin. Phys. Lett., 2009, 26(3): 433-435
[13] ZHONG Wo-Jun, DUAN Yi-Shi. Topological Quantization of Instantons in SU(2) Yang--Mills Theory[J]. Chin. Phys. Lett., 2008, 25(5): 433-435
[14] Zade S S, Patil K D, Mulkalwar P N. Non-Spherical Gravitational Collapse of Strange Quark Matter[J]. Chin. Phys. Lett., 2008, 25(5): 433-435
[15] Gamal G. L. Nashed. Moller's Energy of Kerr-NUT Metric[J]. Chin. Phys. Lett., 2008, 25(4): 433-435
Viewed
Full text


Abstract