Chin. Phys. Lett.  2008, Vol. 25 Issue (2): 425-428    DOI:
Original Articles |
On High-Frequency Soliton Solutions to a (2+1)-Dimensional Nonlinear Partial Differential Evolution Equation
Kuetche Kamgang Victor1;Bouetou Bouetou Thomas2,3;Timoleon Crepin Kofane 1,3
1Department of Physics, Faculty of Science, University of Yaounde I, PO Box. 812, Cameroon2Ecole Nationale Superieure Polytechnique, University of Yaounde I, PO Box. 8390, Cameroon3The Abdus Salam International Centre for Theoretical Physics, P.O. Box 586, Strada Costiera, II-34014, Trieste, Italy
Cite this article:   
Kuetche Kamgang Victor, Bouetou Bouetou Thomas, Timoleon Crepin Kofane 2008 Chin. Phys. Lett. 25 425-428
Download: PDF(932KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A (2+1)-dimensional nonlinear partial differential evolution (NLPDE) equation is presented as a model equation for relaxing high-rate processes in active barothropic media. With the aid of symbolic computation and Hirota's method, some typical solitary wave solutions to this (2+1)-dimensional NLPDE equation are unearthed. As a result, depending on the dissipative parameter, single and multivalued solutions are depicted.
Keywords: 05.45.Yv     
Received: 25 November 2007      Published: 30 January 2008
PACS:  05.45.Yv (Solitons)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2008/V25/I2/0425
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Kuetche Kamgang Victor
Bouetou Bouetou Thomas
Timoleon Crepin Kofane
[1] Drazin P G and Johnson R S 1989 Solitons: anIntroduction (Cambridge: Cambridge University Press)
[2] Vakhnenko V O 1999 J. Math. Phys. 40 2011
[3] Trewick S C et al %, Henshaw T F, Hausinger R P, Lindahl T%and Sedgwick B2002 Nature 419 174
[4] Goodman M B et al %, Ernstrom G G, Chelur D S, O'Hagan R,%Yao C A and Chalfie M2002 Nature 415 1039
[5] Nayfey A H 1973 Perturbation Methods (New York: Wiley)
[6] Nitropolsky Y A, Samoilenko A M and Martinyuk D I 1993 Systems of Evolution Equations with Periodic and QuasiperiodicCoefficients (Dordrecht: Kluwer)
[7] Tang X Y and Lou S Y 2003 J. Math. Phys. 44 4000
[8] Lou S Y 1998 Phys. Rev. Lett. 80 5027
[9] Hirota R 1988 Direct Methods in Soliton Theory (Berlin:Springer)
[10] McClelland G M and Glosli J N 1992 Fundamentals ofFriction: Macroscopic and Microscopic Processes (Dordrecht: Kluwer)
[11] Person B N J 1988 Sliding Friction: Physical Properties andApplications (Berlin: Springer)
[12] Hirota R and Suzuki K 1973 Proc. IEEE 61 1483
[13] Benney D J 1996 J. Math. Phys. 45 52
[14] Washini H and Taniuti T 1966 Phys. Rev. Lett. 17 966
[15] Ott E and Sudan R N 1970 Phys. Fluids 13 1432
[16] Huang G L, Wand D Y and Feraudy H 1997 Geophys. Res. 102 7217
[17] Malykh K V and Ogorodnikov I L 1977 Dynamics of ContinuousMedia (Moscow: Novosibirsk)
Related articles from Frontiers Journals
[1] E. M. E. Zayed, S. A. Hoda Ibrahim. Exact Solutions of Nonlinear Evolution Equations in Mathematical Physics Using the Modified Simple Equation Method[J]. Chin. Phys. Lett., 2012, 29(6): 425-428
[2] HE Jing-Song, WANG You-Ying, LI Lin-Jing. Non-Rational Rogue Waves Induced by Inhomogeneity[J]. Chin. Phys. Lett., 2012, 29(6): 425-428
[3] YANG Zheng-Ping, ZHONG Wei-Ping. Self-Trapping of Three-Dimensional Spatiotemporal Solitary Waves in Self-Focusing Kerr Media[J]. Chin. Phys. Lett., 2012, 29(6): 425-428
[4] CUI Kai. New Wronskian Form of the N-Soliton Solution to a (2+1)-Dimensional Breaking Soliton Equation[J]. Chin. Phys. Lett., 2012, 29(6): 425-428
[5] S. Hussain. The Effect of Spectral Index Parameter κ on Obliquely Propagating Solitary Wave Structures in Magneto-Rotating Plasmas[J]. Chin. Phys. Lett., 2012, 29(6): 425-428
[6] YAN Jia-Ren**,ZHOU Jie,AO Sheng-Mei. The Dynamics of a Bright–Bright Vector Soliton in Bose–Einstein Condensation[J]. Chin. Phys. Lett., 2012, 29(5): 425-428
[7] Saliou Youssoufa, Victor K. Kuetche, Timoleon C. Kofane. Generation of a New Coupled Ultra-Short Pulse System from a Group Theoretical Viewpoint: the Cartan Ehresman Connection[J]. Chin. Phys. Lett., 2012, 29(2): 425-428
[8] Hermann T. Tchokouansi, Victor K. Kuetche, Abbagari Souleymanou, Thomas B. Bouetou, Timoleon C. Kofane. Generating a New Higher-Dimensional Ultra-Short Pulse System: Lie-Algebra Valued Connection and Hidden Structural Symmetries[J]. Chin. Phys. Lett., 2012, 29(2): 425-428
[9] CHEN Shou-Ting**, ZHU Xiao-Ming, LI Qi, CHEN Deng-Yuan . N-Soliton Solutions for the Four-Potential Isopectral Ablowitz–Ladik Equation[J]. Chin. Phys. Lett., 2011, 28(6): 425-428
[10] ZHAO Song-Lin**, ZHANG Da-Jun, CHEN Deng-Yuan . A Direct Linearization Method of the Non-Isospectral KdV Equation[J]. Chin. Phys. Lett., 2011, 28(6): 425-428
[11] WU Jian-Ping . Bilinear Bäcklund Transformation for a Variable-Coefficient Kadomtsev–Petviashvili Equation[J]. Chin. Phys. Lett., 2011, 28(6): 425-428
[12] ZHAO Hai-Qiong, ZHU Zuo-Nong**, ZHANG Jing-Li . Hamiltonian Structures and Integrability for a Discrete Coupled KdV-Type Equation Hierarchy[J]. Chin. Phys. Lett., 2011, 28(5): 425-428
[13] ZHANG Zhi-Qiang, WANG Deng-Long**, LUO Xiao-Qing, HE Zhang-Ming, DING Jian-Wen . Controlling of Fusion of Two Solitons in a Two-Component Condensate by an Anharmonic External Potential[J]. Chin. Phys. Lett., 2011, 28(5): 425-428
[14] WU Jian-Ping** . A New Wronskian Condition for a (3+1)-Dimensional Nonlinear Evolution Equation[J]. Chin. Phys. Lett., 2011, 28(5): 425-428
[15] XIN Xiang-Peng, LIU Xi-Qiang, ZHANG Lin-Lin . Symmetry Reduction, Exact Solutions and Conservation Laws of the Modified Kadomtzev–Patvishvili-II Equation[J]. Chin. Phys. Lett., 2011, 28(2): 425-428
Viewed
Full text


Abstract