Chin. Phys. Lett.  2008, Vol. 25 Issue (2): 417-420    DOI:
Original Articles |
Comparison of Phase Synchronizability of Several Regular Networks for Non-Phase-Coherent Attractors
ZHAO Jun-Chan;LU Jun-An;DING Chun
Comparison of Phase Synchronizability of Several Regular Networks for Non-Phase-Coherent Attractors
Cite this article:   
ZHAO Jun-Chan, LU Jun-An, DING Chun 2008 Chin. Phys. Lett. 25 417-420
Download: PDF(223KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Though applying master stability function method to analyse network omplete synchronization has been well studied in chaotic dynamical systems, it does not work well for phase synchronization. Moreover, it is difficult to identify phase synchronization with the angle of rotation for non-phase-coherent attractors. We employ the recurrences plot method to detect phase synchronization for several regular networks with non-phase-coherent attractors. It is found that the coupling strength μ is different for different coupled networks. The coupling strength μ is reduced as completed coupled network scale enlarges, the coupling strength μ of star coupled network is
irrelevant to network scale, and these two regular networks are easier to achieve phase synchronization. However, for ring and chain coupled networks, the larger the phase synchronization couple strength μ is, the larger the network scale is, and it is more difficult to achieve phase synchronization. For same scale network, once ring coupled structure becomes a chain coupled structure, phase synchronization becomes much more difficult.
Keywords: 05.45.Xt      05.45.-a     
Received: 14 July 2007      Published: 30 January 2008
PACS:  05.45.Xt (Synchronization; coupled oscillators)  
  05.45.-a (Nonlinear dynamics and chaos)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2008/V25/I2/0417
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHAO Jun-Chan
LU Jun-An
DING Chun
[1] Lu J, Chen G and Cheng D 2004 IEEE Trans. Circuitsand Systems I 51 787
[2] Lu J and Chen G 2005 IEEE Tans. Automatic Control 50 841
[3] Hong H, Choi M Y and Kim B J 2002 Phys. Rev. E 65 026139
[4] Zhang J B, LIU Z R and Li Y 2007 Chin. Phys. Lett. 24 1494
[5] Pecora L M and Carroll T L 1998 Phys. Rev. Lett. 80 2109
[6] Barahona M and Pecora L M 2004 Phys. Rev. Lett. 89 054101
[7] Makarenko V and LlinSas R 1998 Proc. Natl. Acad. Sci. USA 95 15474
[8] Elson R C et al 1998 Phys. Rev. Lett. 81 5692
[9] Blasius B, Huppert A and Stone L 1999 Nature 399 354
[10] Allaria E, Arechi F T, Digarbo A and Meucci R 2001 Phys. Rev.Lett. 86 787
[11] Larinotsev E 2000 Int. J. Bifur. Chaos. 10 2441
[12] Parlitz U, Junge L, Lauterborn W and Kocarev L 1996 Phys.Rev. E 54 2115
[13] Taherion S and Lai Y C 2000 Int. J. Bifur. Chaos 11 2587
[14] Palus M, Kurths J, Schwarz U, Novotna D and Charvatova I 2000 Int. J. Bifur. Chaos 10 2519
[15] Rosa E, Pardo W, Ticos C M, Walkenstein J A and Monti M 2000 Int. J. Bifur. Chaos 10 2551
[16] Heagy J F, Carroll T L and Pecora L M 1995 Phys. Rev. E 74 4185
[17] Pikovsky A S, Rosenblum M G and Kurths J 2001 Synchronization (Cambridge: Nonchainar Science) series 12
[18] Rosenblum M G, Pikovsky A S, Kurths J, Osipov G V, Kiss I Zand Hudson J L 2002 Phys. Rev. Lett. 89 264102
[19] Osipov G V, Hu B, Zhou C, Ivanchenko M V and Kurths J 2003 Phys. Rev. Lett. 91 024101
[20] Li C and Chen G 2004 Physica A 341 73
[21] Moreno Y and Pacheco A F 2004 Europhys. Lett. 68 603
[22] Romano M C, Thiel M, Kurths J, Kiss I Z and Hudson J L 2005 Europhys. Lett. 71 466
[23] Kocarev L and Amato P 2005 Chaos 15 024101
[24] Han X P, Lu J A 2007 Sci. Chin. F 2 37
Related articles from Frontiers Journals
[1] K. Fakhar, A. H. Kara. The Reduction of Chazy Classes and Other Third-Order Differential Equations Related to Boundary Layer Flow Models[J]. Chin. Phys. Lett., 2012, 29(6): 417-420
[2] HE Gui-Tian, LUO Mao-Kang. Weak Signal Frequency Detection Based on a Fractional-Order Bistable System[J]. Chin. Phys. Lett., 2012, 29(6): 417-420
[3] ZHAI Liang-Jun, ZHENG Yu-Jun, DING Shi-Liang. Chaotic Dynamics of Triatomic Normal Mode Molecules[J]. Chin. Phys. Lett., 2012, 29(6): 417-420
[4] NIU Yao-Bin, WANG Zhong-Wei, DONG Si-Wei. Modified Homotopy Perturbation Method for Certain Strongly Nonlinear Oscillators[J]. Chin. Phys. Lett., 2012, 29(6): 417-420
[5] LIU Yan, LIU Li-Guang, WANG Hang. Study on Congestion and Bursting in Small-World Networks with Time Delay from the Viewpoint of Nonlinear Dynamics[J]. Chin. Phys. Lett., 2012, 29(6): 417-420
[6] Paulo C. Rech. Dynamics in the Parameter Space of a Neuron Model[J]. Chin. Phys. Lett., 2012, 29(6): 417-420
[7] YAN Yan-Zong, WANG Cang-Long, SHAO Zhi-Gang, YANG Lei. Amplitude Oscillations of the Resonant Phenomena in a Frenkel–Kontorova Model with an Incommensurate Structure[J]. Chin. Phys. Lett., 2012, 29(6): 417-420
[8] LI Jian-Ping,YU Lian-Chun,YU Mei-Chen,CHEN Yong**. Zero-Lag Synchronization in Spatiotemporal Chaotic Systems with Long Range Delay Couplings[J]. Chin. Phys. Lett., 2012, 29(5): 417-420
[9] JIANG Jun**. An Effective Numerical Procedure to Determine Saddle-Type Unstable Invariant Limit Sets in Nonlinear Systems[J]. Chin. Phys. Lett., 2012, 29(5): 417-420
[10] FANG Ci-Jun,LIU Xian-Bin**. Theoretical Analysis on the Vibrational Resonance in Two Coupled Overdamped Anharmonic Oscillators[J]. Chin. Phys. Lett., 2012, 29(5): 417-420
[11] WEI Du-Qu, LUO Xiao-Shu, ZHANG Bo. Noise-Induced Voltage Collapse in Power Systems[J]. Chin. Phys. Lett., 2012, 29(3): 417-420
[12] LI Nian-Qiang, PAN Wei, YAN Lian-Shan, LUO Bin, XU Ming-Feng, TANG Yi-Long. Quantifying Information Flow between Two Chaotic Semiconductor Lasers Using Symbolic Transfer Entropy[J]. Chin. Phys. Lett., 2012, 29(3): 417-420
[13] ZHENG Yong-Ai. Adaptive Generalized Projective Synchronization of Takagi-Sugeno Fuzzy Drive-response Dynamical Networks with Time Delay[J]. Chin. Phys. Lett., 2012, 29(2): 417-420
[14] SUN Mei, CHEN Ying, CAO Long, WANG Xiao-Fang. Adaptive Third-Order Leader-Following Consensus of Nonlinear Multi-agent Systems with Perturbations[J]. Chin. Phys. Lett., 2012, 29(2): 417-420
[15] REN Sheng, ZHANG Jia-Zhong, LI Kai-Lun. Mechanisms for Oscillations in Volume of Single Spherical Bubble Due to Sound Excitation in Water[J]. Chin. Phys. Lett., 2012, 29(2): 417-420
Viewed
Full text


Abstract