Chin. Phys. Lett.  2008, Vol. 25 Issue (2): 413-416    DOI:
Original Articles |
Multi-Synchronization Caused by Uniform Disorder for Globally Coupled Maps

LI Jing-Hui

Faculty of science, PO Box 58, Ningbo University, Ningbo 315211
Cite this article:   
LI Jing-Hui 2008 Chin. Phys. Lett. 25 413-416
Download: PDF(207KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We investigate the motion of the globally coupled maps (logistic map) driven by uniform disorder. It is shown that this disorder can produce multi-synchronization for the globally coupled chaotic maps studied by us. The disorder determines the synchronized dynamics, leading to the emergence of a wide range of new collective behaviour in which the individual units in isolation are incapable of producing in the absence of the disorder. Our results imply that the disorder can tame the collective motion of the coupled chaotic maps.
Keywords: 05.45.Ra      05.45.Xt      89.75.Fb     
Received: 27 November 2007      Published: 30 January 2008
PACS:  05.45.Ra (Coupled map lattices)  
  05.45.Xt (Synchronization; coupled oscillators)  
  89.75.Fb (Structures and organization in complex systems)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2008/V25/I2/0413
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LI Jing-Hui
[1] Hadley P and Wiesenfeld K 1989 Phys. Rev. Lett. 621335 Van den Broeck C et al 1994 Phys. Rev. Lett. 73 3395 Li J H and Huang Z Q 1996 Phys. Rev. E 53 3315 Li J H 2004 Physica D 190 129 Li J H 2007 Chin. Phys. Lett. 24 2505
[2]Wiesenfeld K et al 1995 Phys. Rev. E 51 1020
[3]Wiesenfeld K et al 1990 Phys. Rev. Lett. 65 1749
[4] Peskin C S 1975 Mathematical Aspects of HeartPhysiology (New York: Courant Institute of Mathematical Sciences)
[5] Buck J and Buck E 1968 Science 159 1319
[6]Walker T J 1969 Science 166 891
[7] Kiss I et al 2002 Phys. Rev. Lett. 88 238301 Kiss I et al 2002 Science 296 1676
[8]Hansel D and Sompolinsky H 1992 Phys. Rev. Lett. 68 718 Bressloff P C 1999 Phys. Rev. E 60 2160
[9]Golomb D et al 2001 Handbook of Biological Physics(Amsterdam: Elsevier)
[10] Kuramoto Y 1984 Chemical Oscillations, Waves andTurbulence (Berlin: Springer) Winfree A T 1980 The Geometry of Biological Time (Berlin:Springer) Mirollo R and Strogatz S 1990 SIAM J. Appl. Math. 50 1645 Pethel S D et al 2003 Phys. Rev. Lett. 90 254101
[11] Pisarchik A N et al 2006 Phys. Rev. Lett. 96 244102
[12] Liu Zonghua et al 2001 Phys. Rev. E 63 055201 Hu B and Liu Zonghua 2000 Phys. Rev. E 62 2114
[13] N\'{eda Z et al 2000 Nature 403 849
[14] Brandt S F et al 2006 Phys. Rev. Lett. 96 034104
[15]Haken H 1993 Advanced Synergetics: InstabilityHierarchies of Self-Organizing Systems (Berlin: Springer)
[16]Shinbrot T and Muzzio F J 2001 Nature 410 251
[17]Braiman Y et al 1995 Nature 378 465
[18]Qi F et al 2003 Phys. Rev. Lett. 91 064102
[19] Brandt S F et al 2006 Phys. Rev. Lett. 96 034104
[20]Shibata T et al 1999 Phys. Rev. Lett. 82 4424
[21]Jalan S and Amritkar R E 2003 Phys. Rev. Lett. 90014101
[22] Atay F M et al 2004 Phys. Rev. Lett. 92 144101
[23] Masoller C and Mart\'{i A C 2005 Phys. Rev. Lett. 94 134102
[24] Kaneko K 1990 Phys. Rev. Lett. 65 1391
[25] Li J H 2002 Phys. Rev. E 66 031104 Rozenfeld R et al 2001 Phys. Rev. E 64 051107 Cai J C et al %, Wang C J and Mei D C2007 Chin. Phys. Lett. 24 1162
[26]De Monte Silvia et al 2004 Phys. Rev. Lett. 92 254101
Related articles from Frontiers Journals
[1] HE Gui-Tian, LUO Mao-Kang. Weak Signal Frequency Detection Based on a Fractional-Order Bistable System[J]. Chin. Phys. Lett., 2012, 29(6): 413-416
[2] LI Jian-Ping,YU Lian-Chun,YU Mei-Chen,CHEN Yong**. Zero-Lag Synchronization in Spatiotemporal Chaotic Systems with Long Range Delay Couplings[J]. Chin. Phys. Lett., 2012, 29(5): 413-416
[3] ZHAO Qing-Bai,ZHANG Xiao-Fei,SUI Dan-Ni,ZHOU Zhi-Jin,CHEN Qi-Cai,TANG Yi-Yuan,**. The Efficiency of a Small-World Functional Brain Network[J]. Chin. Phys. Lett., 2012, 29(4): 413-416
[4] CHEN Duan-Bing**,GAO Hui. An Improved Adaptive model for Information Recommending and Spreading[J]. Chin. Phys. Lett., 2012, 29(4): 413-416
[5] LIU Xu,XIE Zheng,YI Dong-Yun**. Community Detection by Neighborhood Similarity[J]. Chin. Phys. Lett., 2012, 29(4): 413-416
[6] LI Ping, ZHANG Jie, XU Xiao-Ke, SMALL Michael. Dynamical Influence of Nodes Revisited: A Markov Chain Analysis of Epidemic Process on Networks[J]. Chin. Phys. Lett., 2012, 29(4): 413-416
[7] REN Xue-Zao, YANG Zi-Mo, WANG Bing-Hong, ZHOU Tao. Mandelbrot Law of Evolving Networks[J]. Chin. Phys. Lett., 2012, 29(3): 413-416
[8] LI Nian-Qiang, PAN Wei, YAN Lian-Shan, LUO Bin, XU Ming-Feng, TANG Yi-Long. Quantifying Information Flow between Two Chaotic Semiconductor Lasers Using Symbolic Transfer Entropy[J]. Chin. Phys. Lett., 2012, 29(3): 413-416
[9] ZHU Zi-Qi, JIN Xiao-Ling, HUANG Zhi-Long. Search for Directed Networks by Different Random Walk Strategies[J]. Chin. Phys. Lett., 2012, 29(3): 413-416
[10] ZHENG Yong-Ai. Adaptive Generalized Projective Synchronization of Takagi-Sugeno Fuzzy Drive-response Dynamical Networks with Time Delay[J]. Chin. Phys. Lett., 2012, 29(2): 413-416
[11] WANG Sha, YU Yong-Guang. Generalized Projective Synchronization of Fractional Order Chaotic Systems with Different Dimensions[J]. Chin. Phys. Lett., 2012, 29(2): 413-416
[12] KADIR Abdurahman, WANG Xing-Yuan**, ZHAO Yu-Zhang . Generalized Synchronization of Diverse Structure Chaotic Systems[J]. Chin. Phys. Lett., 2011, 28(9): 413-416
[13] CHENG Hong-Yan, YANG Jun-Zhong** . Organization of the Strategy Pattern in Evolutionary Prisoner's Dilemma Game on Scale-Free Networks[J]. Chin. Phys. Lett., 2011, 28(6): 413-416
[14] LI Jun, WU Jun**, LI Yong, DENG Hong-Zhong, TAN Yue-Jin** . Optimal Attack Strategy in Random Scale-Free Networks Based on Incomplete Information[J]. Chin. Phys. Lett., 2011, 28(6): 413-416
[15] SHANG Yi-Lun . Local Natural Connectivity in Complex Networks[J]. Chin. Phys. Lett., 2011, 28(6): 413-416
Viewed
Full text


Abstract