Original Articles |
|
|
|
|
Multi-Synchronization Caused by Uniform Disorder for Globally Coupled Maps |
LI Jing-Hui |
Faculty of science, PO Box 58, Ningbo University, Ningbo 315211 |
|
Cite this article: |
LI Jing-Hui 2008 Chin. Phys. Lett. 25 413-416 |
|
|
Abstract We investigate the motion of the globally coupled maps (logistic map) driven by uniform disorder. It is shown that this disorder can produce multi-synchronization for the globally coupled chaotic maps studied by us. The disorder determines the synchronized dynamics, leading to the emergence of a wide range of new collective behaviour in which the individual units in isolation are incapable of producing in the absence of the disorder. Our results imply that the disorder can tame the collective motion of the coupled chaotic maps.
|
Keywords:
05.45.Ra
05.45.Xt
89.75.Fb
|
|
Received: 27 November 2007
Published: 30 January 2008
|
|
PACS: |
05.45.Ra
|
(Coupled map lattices)
|
|
05.45.Xt
|
(Synchronization; coupled oscillators)
|
|
89.75.Fb
|
(Structures and organization in complex systems)
|
|
|
|
|
[1] Hadley P and Wiesenfeld K 1989 Phys. Rev. Lett. 621335 Van den Broeck C et al 1994 Phys. Rev. Lett. 73 3395 Li J H and Huang Z Q 1996 Phys. Rev. E 53 3315 Li J H 2004 Physica D 190 129 Li J H 2007 Chin. Phys. Lett. 24 2505 [2]Wiesenfeld K et al 1995 Phys. Rev. E 51 1020 [3]Wiesenfeld K et al 1990 Phys. Rev. Lett. 65 1749 [4] Peskin C S 1975 Mathematical Aspects of HeartPhysiology (New York: Courant Institute of Mathematical Sciences) [5] Buck J and Buck E 1968 Science 159 1319 [6]Walker T J 1969 Science 166 891 [7] Kiss I et al 2002 Phys. Rev. Lett. 88 238301 Kiss I et al 2002 Science 296 1676 [8]Hansel D and Sompolinsky H 1992 Phys. Rev. Lett. 68 718 Bressloff P C 1999 Phys. Rev. E 60 2160 [9]Golomb D et al 2001 Handbook of Biological Physics(Amsterdam: Elsevier) [10] Kuramoto Y 1984 Chemical Oscillations, Waves andTurbulence (Berlin: Springer) Winfree A T 1980 The Geometry of Biological Time (Berlin:Springer) Mirollo R and Strogatz S 1990 SIAM J. Appl. Math. 50 1645 Pethel S D et al 2003 Phys. Rev. Lett. 90 254101 [11] Pisarchik A N et al 2006 Phys. Rev. Lett. 96 244102 [12] Liu Zonghua et al 2001 Phys. Rev. E 63 055201 Hu B and Liu Zonghua 2000 Phys. Rev. E 62 2114 [13] N\'{eda Z et al 2000 Nature 403 849 [14] Brandt S F et al 2006 Phys. Rev. Lett. 96 034104 [15]Haken H 1993 Advanced Synergetics: InstabilityHierarchies of Self-Organizing Systems (Berlin: Springer) [16]Shinbrot T and Muzzio F J 2001 Nature 410 251 [17]Braiman Y et al 1995 Nature 378 465 [18]Qi F et al 2003 Phys. Rev. Lett. 91 064102 [19] Brandt S F et al 2006 Phys. Rev. Lett. 96 034104 [20]Shibata T et al 1999 Phys. Rev. Lett. 82 4424 [21]Jalan S and Amritkar R E 2003 Phys. Rev. Lett. 90014101 [22] Atay F M et al 2004 Phys. Rev. Lett. 92 144101 [23] Masoller C and Mart\'{i A C 2005 Phys. Rev. Lett. 94 134102 [24] Kaneko K 1990 Phys. Rev. Lett. 65 1391 [25] Li J H 2002 Phys. Rev. E 66 031104 Rozenfeld R et al 2001 Phys. Rev. E 64 051107 Cai J C et al %, Wang C J and Mei D C2007 Chin. Phys. Lett. 24 1162 [26]De Monte Silvia et al 2004 Phys. Rev. Lett. 92 254101 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|