Chin. Phys. Lett.  2008, Vol. 25 Issue (2): 405-408    DOI:
Original Articles |
Blind Extraction of Chaotic Signals by Using the Fast Independent Component Analysis Algorithm
CHEN Hong-Bin1;FENG Jiu-Chao1;FANG Yong2
1School of Electronic and Information Engineering, South China University of Technology, Guangzhou 5106412School of Communication and Information Engineering, Shanghai University, Shanghai 200072
Cite this article:   
CHEN Hong-Bin, FENG Jiu-Chao, FANG Yong 2008 Chin. Phys. Lett. 25 405-408
Download: PDF(139KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We report the results of using the fast independent component analysis (FastICA) algorithm to realize blind extraction of chaotic signals. Two cases are taken into consideration: namely, the mixture is noiseless or contaminated by noise. Pre-whitening is employed to reduce the effect of noise before using the FastICA algorithm. The correlation coefficient criterion is adopted to evaluate the performance, and the success rate is defined
as a new criterion to indicate the performance with respect to noise or different mixing matrices. Simulation results show that the FastICA algorithm can extract the chaotic signals effectively. The impact of noise, the length of a signal frame, the number of sources and the number of observed mixtures on the performance is investigated in detail. It is also shown that regarding a noise as an independent source is not always correct.
Keywords: 05.45.-a      84.40.Ua     
Received: 17 September 2007      Published: 30 January 2008
PACS:  05.45.-a (Nonlinear dynamics and chaos)  
  84.40.Ua (Telecommunications: signal transmission and processing; communication satellites)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2008/V25/I2/0405
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
CHEN Hong-Bin
FENG Jiu-Chao
FANG Yong
[1] Hyvarinen A, Karhunen J, and Oja E 2001 IndependentComponent Analysis (New York: Wiley)
[2] Lo T, Leung H, and Litva J 1996 Proc. ICASSP 31798
[3] Andreyev Y V et al 2003 IEEE Trans. Circ. Syst. I 50 613
[4] Liu K et al 2005 J. Inf. Comput. Sci. 2 283
[5] Wang B Y and Zheng W X 2006 IEEE Trans. Circ. Syst.I$\!$I 53 143
[6] Hyvarinen A and Oja E 1997 Neural Comput. 91483
[7] Eriksson J and Koivunen V 2004 IEEE Signal Process.Lett. 11 601
[8] Belouchrani A et al 1997 IEEE Trans. SignalProcess. 45 434
[9] Farina D et al 2004 IEEE Trans. Biomed. Eng. 51 1555
[10] Li Y and Wang J 2002 IEEE Trans. Signal Process. 50 997
[11] Delfosse N and Loubaton P 1995 Signal Process. 45 59
[12] Feng J C 2005 Chin. Phys. Lett. 22 1851
[13] Liu D et al 2006 IEEE Trans. Circ. Syst. I 532287
Related articles from Frontiers Journals
[1] K. Fakhar, A. H. Kara. The Reduction of Chazy Classes and Other Third-Order Differential Equations Related to Boundary Layer Flow Models[J]. Chin. Phys. Lett., 2012, 29(6): 405-408
[2] ZHAI Liang-Jun, ZHENG Yu-Jun, DING Shi-Liang. Chaotic Dynamics of Triatomic Normal Mode Molecules[J]. Chin. Phys. Lett., 2012, 29(6): 405-408
[3] NIU Yao-Bin, WANG Zhong-Wei, DONG Si-Wei. Modified Homotopy Perturbation Method for Certain Strongly Nonlinear Oscillators[J]. Chin. Phys. Lett., 2012, 29(6): 405-408
[4] LIU Yan, LIU Li-Guang, WANG Hang. Study on Congestion and Bursting in Small-World Networks with Time Delay from the Viewpoint of Nonlinear Dynamics[J]. Chin. Phys. Lett., 2012, 29(6): 405-408
[5] Paulo C. Rech. Dynamics in the Parameter Space of a Neuron Model[J]. Chin. Phys. Lett., 2012, 29(6): 405-408
[6] YAN Yan-Zong, WANG Cang-Long, SHAO Zhi-Gang, YANG Lei. Amplitude Oscillations of the Resonant Phenomena in a Frenkel–Kontorova Model with an Incommensurate Structure[J]. Chin. Phys. Lett., 2012, 29(6): 405-408
[7] LI Jian-Ping,YU Lian-Chun,YU Mei-Chen,CHEN Yong**. Zero-Lag Synchronization in Spatiotemporal Chaotic Systems with Long Range Delay Couplings[J]. Chin. Phys. Lett., 2012, 29(5): 405-408
[8] JIANG Jun**. An Effective Numerical Procedure to Determine Saddle-Type Unstable Invariant Limit Sets in Nonlinear Systems[J]. Chin. Phys. Lett., 2012, 29(5): 405-408
[9] FANG Ci-Jun,LIU Xian-Bin**. Theoretical Analysis on the Vibrational Resonance in Two Coupled Overdamped Anharmonic Oscillators[J]. Chin. Phys. Lett., 2012, 29(5): 405-408
[10] WEI Du-Qu, LUO Xiao-Shu, ZHANG Bo. Noise-Induced Voltage Collapse in Power Systems[J]. Chin. Phys. Lett., 2012, 29(3): 405-408
[11] SUN Mei, CHEN Ying, CAO Long, WANG Xiao-Fang. Adaptive Third-Order Leader-Following Consensus of Nonlinear Multi-agent Systems with Perturbations[J]. Chin. Phys. Lett., 2012, 29(2): 405-408
[12] REN Sheng, ZHANG Jia-Zhong, LI Kai-Lun. Mechanisms for Oscillations in Volume of Single Spherical Bubble Due to Sound Excitation in Water[J]. Chin. Phys. Lett., 2012, 29(2): 405-408
[13] WANG Sha, YU Yong-Guang. Generalized Projective Synchronization of Fractional Order Chaotic Systems with Different Dimensions[J]. Chin. Phys. Lett., 2012, 29(2): 405-408
[14] HUANG Jia-Min, TAO Wei-Ming**, XU Bo-Hou. Evaluation of an Asymmetric Bistable System for Signal Detection under Lévy Stable Noise[J]. Chin. Phys. Lett., 2012, 29(1): 405-408
[15] WANG Can-Jun** . Vibrational Resonance in an Overdamped System with a Sextic Double-Well Potential[J]. Chin. Phys. Lett., 2011, 28(9): 405-408
Viewed
Full text


Abstract