Chin. Phys. Lett.  2008, Vol. 25 Issue (2): 401-404    DOI:
Original Articles |
Fuzzy Impulsive Control of Permanent Magnet Synchronous Motors
LI Dong1,2;WANG Shi-Long2;ZHANG Xiao-Hong3;YANG Dan3;WANG Hui4
1College of Mathematics and Physics Science, Chongqing University, Chongqing 4000302College of Mechanical Engineering, Chongqing University, Chongqing 4000303College of Software Engineering, Chongqing University, Chongqing, 4000304College of Computer Science, Chongqing University, Chongqing, 400030
Cite this article:   
LI Dong, WANG Shi-Long, ZHANG Xiao-Hong et al  2008 Chin. Phys. Lett. 25 401-404
Download: PDF(141KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The permanent magnet synchronous motors (PMSMs) may experience chaotic behaviours with systemic parameters falling into a certain area or under certain working conditions, which threaten the secure and stable operation of motor-driven. Hence, it is important to study the methods of controlling or
suppressing chaos in PMSMs. In this work, the Takagi--Sugeno (T-S) fuzzy impulsive control model for PMSMs is established via the T-S modelling methodology and impulsive technology. Based on the new model, the control conditions of asymptotical stability and exponential stability for PMSMs have been derived by the Lyapunov method. Finally, an illustrated example is also given to show the effectiveness of the obtained results.
Keywords: 05.45.Gg      82.40.Bj      95.10.Fh     
Received: 07 November 2007      Published: 30 January 2008
PACS:  05.45.Gg (Control of chaos, applications of chaos)  
  82.40.Bj (Oscillations, chaos, and bifurcations)  
  95.10.Fh (Chaotic dynamics)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2008/V25/I2/0401
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LI Dong
WANG Shi-Long
ZHANG Xiao-Hong
YANG Dan
WANG Hui
[1] Cetin E and Oguz U Control Engineering Practice (inpress)
[2] Lee T S, Lin C H and Lin F J 2005 Control EngineeringPractice 13 425
[3] Wei D Q, Luo X S, Fang J Q and Wang B H 2006 ActaPhys. Sin. 55 54 (in Chinese)
[4] Baik I C and Kim K H 2000 Control Systems Technology 8 47
[5] Baik I C, Kim K H and Youn M J 1998 Electric PowerApplications 145 369
[6] Karunadasa J P and Renfrew A C 1991 Electric PowerApplications 138 345
[7] Lin F J and Chiu S 1998 Control Theory andApplications 145 63
[8] Wai R J 2001 Industrial Electronics 48 926
[9] Attaianese C, Perfetto A and Tomasso G 1999 ElectricPower Applications 146 391
[10] Hsien T L, Sun Y Y and Tsai M C 1997 Electric PowerApplications 144 173
[11] Li D, Wang S L,Zhang X H, Yang D and Wang H 2007 Chin. Phys. (in press)
[12] Wang Y W, Guan Z H and Wang H O 2003 Phys. Lett. A 320 1154
[13] Ott E, Grebogi C and Yorke J A 1990 Phys. Rev.Lett. 64 1196
[14] Gan Q and Harris C J 1999 I IEEE Trans. Syst. Man.Cybern. B l29 559
[15] Park C W, Lee C H and Park M 2002 InformationSciences 147 245
[16] Guan X P and Hua C C 2002 Chin. Phys. Lett. 19 1031
[17] Liu X W and Zhong S M 2007 Phys. Lett. A 370 260
[18] Sun F Y 2006 Chin. Phys. Lett. 23 32
[19] Liu B, Liu X Z and Liao X X 2004 J. Math. Anal.Appl. 290 19
[20] Tang G N and Hu G 2006 Chin. Phys. Lett. 231523
[21] Wang J, Gao J F, Ma X K and Liang Z H 2006 Chin.Phys. Lett. 23 2027
[22] Cao J D 2003 Phys. Lett. A 307 136
[23] Ma J, Ying H P and Pu Z S 2005 Chin. Phys. Lett. 22 1065
Related articles from Frontiers Journals
[1] Salman Ahmad, YUE Bao-Zeng. Bifurcation and Stability Analysis of the Hamiltonian–Casimir Model of Liquid Sloshing[J]. Chin. Phys. Lett., 2012, 29(6): 401-404
[2] LI Jian-Ping,YU Lian-Chun,YU Mei-Chen,CHEN Yong**. Zero-Lag Synchronization in Spatiotemporal Chaotic Systems with Long Range Delay Couplings[J]. Chin. Phys. Lett., 2012, 29(5): 401-404
[3] KADIR Abdurahman, WANG Xing-Yuan**, ZHAO Yu-Zhang . Generalized Synchronization of Diverse Structure Chaotic Systems[J]. Chin. Phys. Lett., 2011, 28(9): 401-404
[4] WANG Xing-Yuan**, QIN Xue, XIE Yi-Xin . Pseudo-Random Sequences Generated by a Class of One-Dimensional Smooth Map[J]. Chin. Phys. Lett., 2011, 28(8): 401-404
[5] WANG Xing-Yuan**, REN Xiao-Li . Chaotic Synchronization of Two Electrical Coupled Neurons with Unknown Parameters Based on Adaptive Control[J]. Chin. Phys. Lett., 2011, 28(5): 401-404
[6] GUO Rong-Wei . Simultaneous Synchronization and Anti-Synchronization of Two Identical New 4D Chaotic Systems[J]. Chin. Phys. Lett., 2011, 28(4): 401-404
[7] SHI Si-Hong, YUAN Yong, WANG Hui-Qi, LUO Mao-Kang** . Weak Signal Frequency Detection Method Based on Generalized Duffing Oscillator[J]. Chin. Phys. Lett., 2011, 28(4): 401-404
[8] JIANG Nan**, CHEN Shi-Jian . Chaos Control in Random Boolean Networks by Reducing Mean Damage Percolation Rate[J]. Chin. Phys. Lett., 2011, 28(4): 401-404
[9] ZHANG Ying-Qian, WANG Xing-Yuan** . A Parameter Modulation Chaotic Secure Communication Scheme with Channel Noises[J]. Chin. Phys. Lett., 2011, 28(2): 401-404
[10] LI Hai-Yan**, HU Yun-An . Backstepping-Based Synchronization Control of Cross-Strict Feedback Hyper-Chaotic Systems[J]. Chin. Phys. Lett., 2011, 28(12): 401-404
[11] SHANG Hui-Lin**, WEN Yong-Peng . Fractal Erosion of the Safe Basin in a Helmholtz Oscillator and Its Control by Linear Delayed Velocity Feedback[J]. Chin. Phys. Lett., 2011, 28(11): 401-404
[12] SHANG Hui-Lin. Control of Fractal Erosion of Safe Basins in a Holmes–Duffing System via Delayed Position Feedback[J]. Chin. Phys. Lett., 2011, 28(1): 401-404
[13] DU Mao-Kang**, HE Bo, WANG Yong . Security Analysis of a Block Encryption Algorithm Based on Dynamic Sequences of Multiple Chaotic Systems[J]. Chin. Phys. Lett., 2011, 28(1): 401-404
[14] XU Jie, LONG Ke-Ping, FOURNIER-PRUNARET Danièle, TAHA Abdel-Kaddous, CHARGE Pascal. Chaotic Dynamics in a Sine Square Map: High-Dimensional Case (N≥3)[J]. Chin. Phys. Lett., 2010, 27(8): 401-404
[15] LU Xiao-Qing, Francis Austin, CHEN Shi-Hua. Cluster Consensus of Nonlinearly Coupled Multi-Agent Systems in Directed Graphs[J]. Chin. Phys. Lett., 2010, 27(5): 401-404
Viewed
Full text


Abstract