Chin. Phys. Lett.  2008, Vol. 25 Issue (2): 367-370    DOI:
Original Articles |
Topological Properties of Spatial Coherence Function
REN Ji-Rong;ZHU Tao;DUAN Yi-Shi
Institute of Theoretical Physics, Lanzhou University, Lanzhou 730000
Cite this article:   
REN Ji-Rong, ZHU Tao, DUAN Yi-Shi 2008 Chin. Phys. Lett. 25 367-370
Download: PDF(112KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The topological properties of the spatial coherence function are investigated rigorously. The phase singular structures (coherence vortices) of coherence function can be naturally deduced from the topological current, which is an abstract mathematical object studied previously. We find that coherence
vortices are characterized by the Hopf index and Brouwer degree in
topology. The coherence flux quantization and the linking of the closed coherence vortices are also studied from the topological properties of the spatial coherence function.
Keywords: 03.65.Vf      42.25.Kb      02.40.Xx     
Received: 28 August 2007      Published: 30 January 2008
PACS:  03.65.Vf (Phases: geometric; dynamic or topological)  
  42.25.Kb (Coherence)  
  02.40.Xx (Singularity theory)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2008/V25/I2/0367
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
REN Ji-Rong
ZHU Tao
DUAN Yi-Shi
[1] Wolf E 1954 Proc. R. Soc. A 225 96 Wolf E 1954 Nuovo Cimento 12 884
[2] Schouten H F, Gbur G, Visser T D and Wolf E 2003 Opt.Lett. 28 968 Gbur G and Visser T D 2003 Opt. Commun. 222 117
[3Bogatyryova G V, Fel{\'{de C V, Polyanskii P V,Ponomarenko S A, Soskin M S and Wolf E 2003 Opt. Lett. 28 878 Palacios D M, Maleev I D, Marathay A S and Swartzlander G A,Jr. 2004 Phys. Rev. Lett. 92 143905 Fischer D G and Visser T D 2004 J. Opt. Soc. Am. A 21 2097
[4]Wang W, Duan Z, Hanson S G, Miyamoto Y and Takeda M 2006 Phys. Rev. Lett. 96 073902
[5] Wang W and Takeda M 2006 Phys. Rev. Lett. 96223904
[6] Duan Y S, Li S and Yang G H 1998 Nucl. Phys. B 514 705 Duan Y S, Zhang H and Li S 1998 Phys. Rev. B 58125
[7]Duan Y S, Liu X and Fu L B 2003 Phys. Rev. D 67085022
[8] Duan Y S, Liu X and Zhang P M 2002 J. Phys: Condens.Mather 14 7941
[9] Duan Y S, Zhang H and Jia G 1999 Phys. Lett. A 253 57
[10]Goursat E 1904 A Course in Mathematical Analysistranslated by Hedrick E R (New York: Dover) Vol 1
[11] Schouton J A 1951 Tensor Analysis for Physicists(Oxford: Clarendon)
[12] Moffatt H K 1969 J. Fluid. Mech. 35 117
[13Ra\~{nada A F and Trueba J L 1995 Phys. Lett. A 202 337
[14]Berry M V and Dennis M R 2001 Proc. R. Soc. A 457 2251
[15] Dennis M R 2004 J. Opt. A: Pure. Appl. Opt. 6 S202
[16] Holleran K O, Padgett M J and Dennis M R 2006 Opt.Exp 14 3039
[17]Leach J, Dennis M R, Courtial J and Padgett M J 2004 Nature 432 165 Leach J, Dennis M R, Courtial J and Padgett M J 2005 NewJ. Phys. 7 55
[18]Ren J R and Zhu T (in preparation)
Related articles from Frontiers Journals
[1] WANG Qiang, YE Chong, FU Li-Bin. Quantum Cyclotron Orbits of a Neutral Atom Trapped in a Triple Well with a Synthetic Gauge Field[J]. Chin. Phys. Lett., 2012, 29(6): 367-370
[2] LIAN Jin-Ling, ZHANG Yuan-Wei, LIANG Jiu-Qing. Macroscopic Quantum States and Quantum Phase Transition in the Dicke Model[J]. Chin. Phys. Lett., 2012, 29(6): 367-370
[3] YAN Long,FENG Xun-Li**,ZHANG Zhi-Ming,LIU Song-Hao. An Extra Phase for Two-Mode Coherent States Displaced in Noncommutative Phase Space[J]. Chin. Phys. Lett., 2012, 29(4): 367-370
[4] LIN Jie, **, CHENG Jing . Lensless Ghost Diffraction with Partially Coherent Sources: Effects of the Source Size, Transverse Coherence, Detector Size and Defocusing Length[J]. Chin. Phys. Lett., 2011, 28(9): 367-370
[5] ZHANG Ai-Ping**, QIANG Wen-Chao, LING Ya-Wen, XIN Hong, YANG Yong-Ming . Geometric Phase for a Qutrit-Qubit Mixed-Spin System[J]. Chin. Phys. Lett., 2011, 28(8): 367-370
[6] ZHENG Xiao-Hu, DONG Jun, LIU Yu-Wen, YANG Ming, CAO Zhuo-Liang. Unconventional Geometric Quantum Gate in Circuit QED[J]. Chin. Phys. Lett., 2010, 27(7): 367-370
[7] LI Jian-Long. New Expressions for Dark-Hollow Light Beams[J]. Chin. Phys. Lett., 2010, 27(6): 367-370
[8] LI Jian-Long, TANG Shi-Hong, LU Bai-Da. A Transverse-Longitudinal Cross-Spectral Density Matrix of Partially Coherent Electromagnetic Beams[J]. Chin. Phys. Lett., 2010, 27(2): 367-370
[9] WANG Xiao-Lin, ZHOU Pu, MA Yan-Xing, MA Hao-Tong, XU Xiao-Jun, LIU Ze-Jin, ZHAO Yi-Jun. Coherent Beam Combining of Two Fiber Amplifiers Seeded by Multi-Wavelength Fiber Laser[J]. Chin. Phys. Lett., 2010, 27(12): 367-370
[10] FENG Zhi-Bo, YAN Run-Ying. Robust Quantum Computation with Superconducting Charge Qubits via Coherent Pulses[J]. Chin. Phys. Lett., 2010, 27(1): 367-370
[11] JIANG Ming-Ming, YU Si-Xia. Generators for Symmetric Universal Quantum Cloning Machines[J]. Chin. Phys. Lett., 2010, 27(1): 367-370
[12] XU Tao. Topological Structure of Vortices in Multicomponent Bose-Einstein Condensates[J]. Chin. Phys. Lett., 2009, 26(9): 367-370
[13] MA Yan-Xing, LIU Ze-Jin, ZHOU Pu, WANG Xiao-Lin, MA Hao-Tong, LI Xiao, XU Xiao-Jun, SI Lei. Coherent Beam Combination of Three Fiber Amplifiers with Multi-dithering Technique[J]. Chin. Phys. Lett., 2009, 26(4): 367-370
[14] ZHOU Pu, LIU Ze-Jin, WANG Xiao-Lin, MA Yan-Xing, LI Xiao, XU Xiao-Jun, GUO Shao-Feng. Coherent Beam Combining of Three Watt-Level Fiber Amplifiers Using a DSP-Based Stochastic Parallel Gradient Descent Algorithm[J]. Chin. Phys. Lett., 2009, 26(4): 367-370
[15] CAO Li-Mei, SUN Hua-Fei, ZHANG Zhen-Ning. Geometric Description of Fibre Bundle Surface for Birkhoff System[J]. Chin. Phys. Lett., 2009, 26(3): 367-370
Viewed
Full text


Abstract