Chin. Phys. Lett.  2008, Vol. 25 Issue (2): 359-362    DOI:
Original Articles |
Noncommutative AKNS Equation Hierarchy and Its Integrable Couplings with Kronecker Product
YU Fa-Jun
College of Mathematics and Systematic Science, Shenyang Normal University, Shenyang 110034
Cite this article:   
YU Fa-Jun 2008 Chin. Phys. Lett. 25 359-362
Download: PDF(98KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We present a noncommutative version of the Ablowitz--Kaup--Newell--Segur (AKNS) equation hierarchy, which possesses the zero curvature representation. Furthermore, we derive the noncommutative AKNS equation from the noncommutative (anti-)self-dual Yang--Mills equation by reduction, which is an evidence for the noncommutative Ward conjecture. Finally, the
integrable coupling system of the noncommutative AKNS equation hierarchy is constructed by using the Kronecker product.
Keywords: 02.30.Ik     
Received: 28 October 2007      Published: 30 January 2008
PACS:  02.30.Ik (Integrable systems)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2008/V25/I2/0359
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
YU Fa-Jun
[1] Douglas M R and Nekrasov N A 2002 Rev. Mod. Phys.73 977
[2]Ito K 2004 Bull. Phys. Soc. Jpn. 59 856 (inJapanese)
[3] Sen A hep-th/0410103
[4]Hamanaka M 2005 J. Math. Phys. 46 052701
[5]Minwalla S, Raamsdonk M V and Seiberg N 2000 J. HighEnergy Phys. 02 020
[6]Seiberg N and Witten E 1999 J. High Energy Phys. 09 032
[7]Takasaki K 2001 J. Geom. Phys. 37 291
[8] Moyal J E 1949 Proc. Camb. Phil. Soc. 45 99
[9]Wang N and Wadati M 2003 J. Phys. Soc. Jpn. 721366
[10]Shigechi K, Wang N and Wadati M 2005 Nucl. Phys. B 706 518
[11]Grisaru M T and Penati S 2003 Nucl. Phys. B655 250
[12] Legare M 2002 J. Phys. A 35(26) 5489
[13] Ward R S 1986 Multidimensional Integrable SystemsLecture Notes in Physics (Berlin: Springer) 280 106
[14]Lechtenfeld O and Popov A D 2001 Phys. Lett. B 523 178
[15]Hamanaka M and Toda K 2002 Phys. Lett. A 316 77
[16]Fuchssteiner B 1993 Coupling of Completely IntegrableSystems (Dordrecht: Kluwer) p 125
[17] Guo F K and Zhang Y F 2005 J. Phys. A 388537
[18]Ma W X 2003 Phys. Lett. A 316 72
[19]Zhang Y F and Zhang H Q 2002 J. Math. Phys. 43466
[20]Yu F J, Xia T C and Zhang H Q 2006 Chaos, Solitonsand Fractals 27 1036
[21]Yu F J and Zhang H Q 2006 Commun. Theor. Phys. 415 587
[22]Tu G Z 1989 J Math Phys. 33 330
Related articles from Frontiers Journals
[1] E. M. E. Zayed, S. A. Hoda Ibrahim. Exact Solutions of Nonlinear Evolution Equations in Mathematical Physics Using the Modified Simple Equation Method[J]. Chin. Phys. Lett., 2012, 29(6): 359-362
[2] CAO Ce-Wen**,ZHANG Guang-Yao. Lax Pairs for Discrete Integrable Equations via Darboux Transformations[J]. Chin. Phys. Lett., 2012, 29(5): 359-362
[3] WANG Jun-Min. Periodic Wave Solutions to a (3+1)-Dimensional Soliton Equation[J]. Chin. Phys. Lett., 2012, 29(2): 359-362
[4] Hermann T. Tchokouansi, Victor K. Kuetche, Abbagari Souleymanou, Thomas B. Bouetou, Timoleon C. Kofane. Generating a New Higher-Dimensional Ultra-Short Pulse System: Lie-Algebra Valued Connection and Hidden Structural Symmetries[J]. Chin. Phys. Lett., 2012, 29(2): 359-362
[5] LIU Ping**, FU Pei-Kai. Note on the Lax Pair of a Coupled Hybrid System[J]. Chin. Phys. Lett., 2012, 29(1): 359-362
[6] LOU Yan, ZHU Jun-Yi** . Coupled Nonlinear Schrödinger Equations and the Miura Transformation[J]. Chin. Phys. Lett., 2011, 28(9): 359-362
[7] WANG Jun-Min**, YANG Xiao . Theta-function Solutions to the (2+1)-Dimensional Breaking Soliton Equation[J]. Chin. Phys. Lett., 2011, 28(9): 359-362
[8] CHEN Shou-Ting**, ZHU Xiao-Ming, LI Qi, CHEN Deng-Yuan . N-Soliton Solutions for the Four-Potential Isopectral Ablowitz–Ladik Equation[J]. Chin. Phys. Lett., 2011, 28(6): 359-362
[9] ZHAO Song-Lin**, ZHANG Da-Jun, CHEN Deng-Yuan . A Direct Linearization Method of the Non-Isospectral KdV Equation[J]. Chin. Phys. Lett., 2011, 28(6): 359-362
[10] ZHAO Hai-Qiong, ZHU Zuo-Nong**, ZHANG Jing-Li . Hamiltonian Structures and Integrability for a Discrete Coupled KdV-Type Equation Hierarchy[J]. Chin. Phys. Lett., 2011, 28(5): 359-362
[11] LI Ji-Na, ZHANG Shun-Li, ** . Approximate Symmetry Reduction for Initial-value Problems of the Extended KdV-Burgers Equations with Perturbation[J]. Chin. Phys. Lett., 2011, 28(3): 359-362
[12] WANG Jun-Min . Traveling Wave Evolutions of a Cosh-Gaussian Laser Beam in Both Kerr and Cubic Quintic Nonlinear Media Based on Mathematica[J]. Chin. Phys. Lett., 2011, 28(3): 359-362
[13] WU Hua, ZHANG Da-Jun** . Strong Symmetries of Non-Isospectral Ablowitz–Ladik Equations[J]. Chin. Phys. Lett., 2011, 28(2): 359-362
[14] YU Fa-Jun. Conservation Laws and Self-Consistent Sources for a Super-Classical-Boussinesq Hierarchy[J]. Chin. Phys. Lett., 2011, 28(12): 359-362
[15] Abbagari Souleymanou, **, Victor K. Kuetche, Thomas B. Bouetou, , Timoleon C. Kofane . Scattering Behavior of Waveguide Channels of a New Coupled Integrable Dispersionless System[J]. Chin. Phys. Lett., 2011, 28(12): 359-362
Viewed
Full text


Abstract