Chin. Phys. Lett.  2008, Vol. 25 Issue (12): 4459-4462    DOI:
Original Articles |
Effect of Aspect Ratio Distribution on Localized Surface Plasmon Resonance Extinction Spectrum of Gold Nanorods
TAO Jun1, LU Yong-Hua1, ZHENG Rong-Sheng1, LIN Kai-Qun1, XIE Zhi-Guo1, LUO Zhao-Feng2, LI Sheng-Li1, WANG Pei1, MING Hai1
Department of Physics, Anhui Key Laboratory of Optoelectronic Science and Technology, University of Science and Technology of China, Hefei 230026
Cite this article:   
TAO Jun, LU Yong-Hua, ZHENG Rong-Sheng et al  2008 Chin. Phys. Lett. 25 4459-4462
Download: PDF(427KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Gold nanorods with different aspect ratios are prepared in micells using a seeded growth method. Their extinction spectra are observed with an UV-visible spectrophotometer and analysed theoretically. It is known that there are two plasmon resonance peaks for gold nanorod corresponding to transverse and longitudinal plasmon resonance respectively. Moreover, the longitudinal plasmon resonance peak shifts to long wavelength when we increase the aspect ratio determined from TEM. Especially, we model the extinction spectrum using Gans' theory and compare it with our experimental result. Considering the aspect radios distribution of gold nanorods, it is found that longitudinal plasmon resonance peak will be wider than the nanorods with single aspect ratio, which is consistent with our experimental result. In addition, the effect of dielectric constant of surrounding medium is considered.
Keywords: 81.05.-t      81.07.-b      81.16.Be      78.20.Ci      78.67.Bf     
Received: 12 September 2008      Published: 27 November 2008
PACS:  81.05.-t (Specific materials: fabrication, treatment, testing, and analysis)  
  81.07.-b (Nanoscale materials and structures: fabrication and characterization)  
  81.16.Be (Chemical synthesis methods)  
  78.20.Ci (Optical constants (including refractive index, complex dielectric constant, absorption, reflection and transmission coefficients, emissivity))  
  78.67.Bf (Nanocrystals, nanoparticles, and nanoclusters)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2008/V25/I12/04459
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
TAO Jun
LU Yong-Hua
ZHENG Rong-Sheng
LIN Kai-Qun
XIE Zhi-Guo
LUO Zhao-Feng
LI Sheng-Li
WANG Pei
MING Hai
[1] Huang Y, Duan X and Lieber C M 2001 Science. 291 630
[2] Law M, Sibuly D J, Johnson J C, Goldberger J, Saykally R Jand Yang P 2004 Science. 305 1269
[3] Katz E and Willner I 2004 Angew. Chem. Int. Ed.Engl. 43 6042
[4] Link S, Mohamed M, and El-Sayed M 1999 J. Phys.Chem. B 103 3073
[5] Jana N R, Gearheart L and Murphy C J 2001 J. Phys.Chem. B 105 4065
[6] Martin C R 1996 Chem. Mater. 8 1739
[7] Yu Y Y, Chang S S, Lee C L and Wang C R C 1997 J.Phys. Chem. B 101 6661
[8] Nikoobakht B and El-Sayed M A 2003 Chem. Mater. 15 1957
[9] Kim F, Song J H and Yang P 2002 J. Am. Chem. Soc. 124 14316
[10] Johnson P B and Christy R. W 1972 Phys. Rev. B 6 4370
Related articles from Frontiers Journals
[1] WANG Guo-Biao, XIONG Huan, LIN You-Xi, FANG Zhi-Lai, KANG Jun-Yong, DUAN Yu, SHEN Wen-Zhong. Green Emission from a Strain-Modulated InGaN Active Layer[J]. Chin. Phys. Lett., 2012, 29(6): 4459-4462
[2] ZHANG Li-Wei, ZHANG Ye-Wen, HE Li, WANG You-Zhen. Experimental Study of Tunneling modes in Photonic Crystal Heterostructure Consisting of Single-Negative Materials[J]. Chin. Phys. Lett., 2012, 29(6): 4459-4462
[3] LU Ran,JIANG Gen-Shan,LI Bin,ZHAO Quan-Liang,ZHANG De-Qing,YUAN Jie,CAO Mao-Sheng**. Electrical Properties of Lead Zirconate Titanate Thick Film Containing Micro- and Nano-Crystalline Particles[J]. Chin. Phys. Lett., 2012, 29(5): 4459-4462
[4] TIAN Lu,ZHAO Kun,**,ZHOU Qing-Li,SHI Yu-Lei,ZHANG Cun-Lin. Quantitative Analysis for Monitoring Formulation of Lubricating Oil Using Terahertz Time-Domain Transmission Spectroscopy[J]. Chin. Phys. Lett., 2012, 29(4): 4459-4462
[5] M. R. Shah**,A. K. M. Akther Hossain. Influence of Lanthanum on the Microstructural and Dielectric Properties of Polycrystalline Ba(Ti0.5Fe0.5)O3[J]. Chin. Phys. Lett., 2012, 29(4): 4459-4462
[6] WANG Jia-Fu, QU Shao-Bo, XU Zhuo, MA Hua, WANG Cong-Min, XIA Song, WANG Xin-Hua, ZHOU Hang. Grating-Coupled Waveguide Cloaking[J]. Chin. Phys. Lett., 2012, 29(3): 4459-4462
[7] WU Hong, JIANG Li-Yong, JIA Wei, LI Xiang-Yin. Polarization Beam Splitter Based on an Annular Photonic Crystal of Negative Refraction[J]. Chin. Phys. Lett., 2012, 29(3): 4459-4462
[8] A. Ozturk, R. Suleymanli, B. Aktas, A. Teber. Effect of Thin Metallic Layers on the Refractive Index of a Multilayer System[J]. Chin. Phys. Lett., 2012, 29(2): 4459-4462
[9] MA Jian-Yong, FAN Yong-Tao. Guided Mode Resonance Transmission Filters Working at the Intersection Region of the First and Second Leaky Modes[J]. Chin. Phys. Lett., 2012, 29(2): 4459-4462
[10] FU Xiao-Jian, XU Yuan-Da, ZHOU Ji. Abnormal Dielectric Response in an Optical Range Based on Electronic Transition in Rare-Earth-Ion-Doped Crystals[J]. Chin. Phys. Lett., 2012, 29(2): 4459-4462
[11] WANG Peng, WANG Rong-Yao**, JIN Jing-Yang, XU Le, SHI Qing-Fan**. The Morphological Change of Silver Nanoparticles in Water[J]. Chin. Phys. Lett., 2012, 29(1): 4459-4462
[12] LUO Bing-Cheng, CHEN Chang-Le**, FAN Fei, JIN Ke-Xin. The Photovoltaic Properties of BiFeO3La0.7Sr0.3MnO3 Heterostructures[J]. Chin. Phys. Lett., 2012, 29(1): 4459-4462
[13] SIB KRISHNA Ghoshal**, M. R. Sahar, M. S. Rohani . Dielectric Function of Silicon Nanoclusters: Role of Hydrogen[J]. Chin. Phys. Lett., 2011, 28(9): 4459-4462
[14] MA Feng-Ying, SU Jian-Po**, GONG Qiao-Xia, YANG Jing, DU Yan-Li, GUO Mao-Tian, YUAN Bin . Measurement of the Optical Constants of Thin Metal Films by THz Differential Time Domain Spectroscopy[J]. Chin. Phys. Lett., 2011, 28(9): 4459-4462
[15] XU Ming**, SHEN Wei-Dong**, ZHANG Yue-Guang, ZHEN Hong-Yu, LIU Xu . Optical Properties of BDK-Doped Highly Photosensitive Sol-Gel Hybrid Film[J]. Chin. Phys. Lett., 2011, 28(8): 4459-4462
Viewed
Full text


Abstract