Original Articles |
|
|
|
|
Mechanical Properties and Electronic Structures of Cotunnite TiO2 |
ZHAO Jian-Zhi1, WANG Guang-Tao1, LIANG Yong-Cheng2 |
1Beijing National Laboratory for Condensed Matter physics, and Institute of Physics, Chinese Academy of Sciences, Beijing 1001902College of Engineering Science and Technology, Shanghai Ocean University, Shanghai 201306 |
|
Cite this article: |
ZHAO Jian-Zhi, WANG Guang-Tao, LIANG Yong-Cheng 2008 Chin. Phys. Lett. 25 4356-4359 |
|
|
Abstract Based on the first-principles plane-wave basis pseudopotential calculations, we investigate mechanical properties and electronic structures of the hardest known oxide, cotunnite TiO2. The calculated results show that cotunnite TiO2 has the highest bulk modulus (348 GPa) and hardness (32GPa) among the high-pressure phases of TiO2, but its mechanical properties are not superior to those of c-BN. Moreover, the high hardness of cotunnite TiO2 can be understood from both the dense crystal structure (high valence electron density and short bond lengths) and the unusual mixtures of covalent and ionic bonding of Ti--O.
|
Keywords:
62.20.-x
71.20.Be
71.15.Mb
|
|
Received: 20 May 2008
Published: 27 November 2008
|
|
PACS: |
62.20.-x
|
(Mechanical properties of solids)
|
|
71.20.Be
|
(Transition metals and alloys)
|
|
71.15.Mb
|
(Density functional theory, local density approximation, gradient and other corrections)
|
|
|
|
|
[1] Muscat J, Swamy V and Harrison N M 2002 Phys. Rev. B 65 224112 [2] Dubrovinskaia N A et al 2001 Phys. Rev. Lett. 87 275501 [3] Ahuja R andDubrovinsky L S 2002 J. Phys.: Condens.Matter 14 10995 [4] Mattesini M et al 2004 Phys. Rev. B 70 212101 [5] Kim D Y, Almeida J S, Koci L and Ahuja R 2007 Appl.Phys. Lett. 90 171903 [6] Zhang Z, Ge Q, Li S C, Kay B D, White J M and Dohnalek Z2007 Phys. Rev. Lett. 99 126105 [7] Park B H, Huang J Y, Li L S and Jia Q X 2002 Appl.Phys. Lett. 80 1174 [8] Fresno F, Tudela D, Maira A J, Rivera F, Coronado J M andSoria J 2006 Appl. Organomet. Chem. 20 220 [9] Matsumoto Y et al 2001 Science 291 854 [10] Swamy V and Muddle B C 2007 Phys. Rev. Lett. 98 035502 [11] Liang Y, Zhang B and Zhao J 2008 Phys. Rev. B 77 094126 [12] Dubrovinsky L S et al 2001 Nature 410 653 [13] Lowther J E 2005 Phys. Rev. B 72 172105 [14] Fang Z and Terakura K 2002 J. Phys.: Condens.Matter 14 3001 [15] Perdew J P, Wang Y 1992 Phys. Rev. B 45 13244 [16] Vanderbilt D 1990 Phys. Rev. B 41 7892 [17] Hamann D R, Schluter M and Chiang C 1979 Phys. Rev.Lett. 43 1494 [18] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188 [19] Liang Y and Fang Z 2006 J. Phys.: Condens. Matter 18 8749 [20] Liang Y and Zhang B 2007 Phys. Rev. B 76132101 [21] Liang Y, Zhao J and Zhang B 2008 Solid StateCommun. 146 450 [22] Hill R 1953 Proc. Phys. Soc. London 65 350 [23] Gerward L and Olsen J S 1997 J. Appl. Crystallogr. 30 259 [24] Poirier J P 1991 Introduction to the Physics of theEarth's Interior (Cambridge: Cambridge University) [25] Occelli F et al 2004 Phys. Rev. Lett. 93 095502 [26] Born M and Huang K 1956 Dynamical Theory of CrystalLattices (Clarendon: Oxford) [27] Gao F, He J, Wu E, Liu S, Yu D, Li D, Zhang S and Tian Y2003 Phys. Rev. Lett. 91 015502 [28] Simunek A and Vackar J 2006 Phys. Rev. Lett. 96 085501 [29] Simunek A 2007 Phys. Rev. B 75 172108 [30] Chen X, Fu C L, Krcmar M and Painter G S 2008 Phys.Rev. Lett. 100 196403 [31] Mattesini M, Almeida J S, Dubrovinsky L, Dubrovinskaia N,Johansson B and Ahuja R 2004 Phys. Rev. B 70 115101 [32] Glassford K M and Chelikowsky J R 1992 Phys. Rev. B 46 1284 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|