Chin. Phys. Lett.  2008, Vol. 25 Issue (12): 4318-4320    DOI:
Original Articles |
New Sedov-Type Solution of Isotropic Turbulence
RAN Zheng
Shanghai Institute of Applied Mathematics and Mechanics, hanghai University, Shanghai 200072
Cite this article:   
RAN Zheng 2008 Chin. Phys. Lett. 25 4318-4320
Download: PDF(234KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The starting point lies in the results obtained by Sedov (1944) for isotropic turbulence with a self-preserving hypothesis. A careful consideration of the mathematical structure of the Karman--Howarth equation leads to an exact analysis of all cases possible and to all admissible solutions of the problem. I study this interesting problem from a new point of view. New solutions are obtained. Based on these exact solutions, some physical significant consequences of recent advances in the theory of self-preserved homogeneous statistical solution of the Navier--Stokes equations are presented
Keywords: 47.27.Gs      47.27.Jv     
Received: 11 February 2008      Published: 27 November 2008
PACS:  47.27.Gs (Isotropic turbulence; homogeneous turbulence)  
  47.27.Jv (High-Reynolds-number turbulence)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2008/V25/I12/04318
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
RAN Zheng
[1] Zhou P Y et al 1957 Chin. Theor. Appl. Mech. 13 Zhou P Y and Huang Y N 1975 Sci. Sin. 3 180 Huang Y N and Zhou P Y 1981 Sci. Sin. 24 1207
[2] Speziale C G et al 1992 J. Fluid Mech. 241645 George W K 1992 Phys. Fluids A 4 1492
[3] Skrbek L and Steven R S 2000 Phys. Fluids 121997
[4] Lundgren T S 2003 Phys. Fluids 15 1074
[5] Fukayama D et al 2001 Phys. Rev. E 64 016304
[6] Davidson P A 2000 J. Turbulence 1 6
[7] Karman T et al 1938 Proc. R. Soc. London A 164 192
[8] Monin A S et al 1975 Statistical Fluid Mechanics:Mechanics of Turbulence (Cambridge, MA: MIT Press) vol 2
[9] Millionshtchikov M 1941 Dokl. Akad. Nauk. SSSR 32 615
[10] Dryden J L 1943 Quart. Appl. Math. 1 7
[11] Sedov L I 1944 Dokl. Akad. Nauk. SSSR 42 116
[12] Sedov L I 1982 Similarity and Dimensional Methods inMechanics translated by Kisin V I (Moscow: Mir)
[13] Korneyev A et al 1976 Fluid Mech. Sov. Res. 537
[14] Polyanin A D et al 2003 Handbook of Exact Solutionsfor Ordinary Differential Equations 2nd edn (Florida: CRC)
[15] Zaitsev V F et al 1994 Discrete-Group Methods forIntegrating Equations of Nonlinear Mechanics (Boca Raton, FL: CRC Press)
[16] Deissler R G 1958 Phys. Fluids 1 111
[17] Ling S C and Huang T T 1970 Phys. Fluids 132912
[18] Bennett J C and Corrsin S 1978 Phys. Fluids 21 2129
[19] Karman T 1937 J. Aero. Sci. 4 131
[20] Taylor G I 1937 J. Aero. Sci. 4 311
[21] Tatsumi T 1980 Adv. Appl. Mech. 20 39
[22] McComb W D 1990 The Physics of Fluid Turbulence(Oxford: Clarendon)
Related articles from Frontiers Journals
[1] JI Yu-Pin, KANG Xiu-Ying, LIU Da-He. Simulation of Non-Newtonian Blood Flow by Lattice Boltzman Method[J]. Chin. Phys. Lett., 2010, 27(9): 4318-4320
[2] ZHU Jian-Zhou, Mark Taylor. Intermittency and Thermalization in Turbulence[J]. Chin. Phys. Lett., 2010, 27(5): 4318-4320
[3] ZHU Jian-Zhou. Intermittency Growth in Fluid Turbulence[J]. Chin. Phys. Lett., 2006, 23(8): 4318-4320
Viewed
Full text


Abstract