Chin. Phys. Lett.  2008, Vol. 25 Issue (12): 4311-4313    DOI:
Original Articles |
Zero-Dispersion Slow Light with Wide Bandwidth in Photonic Crystal Coupled Waveguides
MAO Xiao-Yu, ZHANG Geng-Yan, HUANG Yi-Dong, ZHANG Wei, PENG Jiang-De
State Key Laboratory of Integrated Optoelectronics, Department of Electronic Engineering, Tsinghua University, Beijing 100084
Cite this article:   
MAO Xiao-Yu, ZHANG Geng-Yan, HUANG Yi-Dong et al  2008 Chin. Phys. Lett. 25 4311-4313
Download: PDF(449KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract By introducing an adjustment waveguide besides the incident waveguide, zero-dispersion slow light with wide bandwidth can be realized due to anticrossing of the incident waveguide mode and the adjustment waveguide mode. The width of the adjustment waveguide (W2) and the hole radii of the coupling region (r') will change the dispersion of incident waveguide mode. Theoretical investigation reveals that zero dispersion at various low group velocity vg in incident waveguide can be achieved. In particular, proper W2 and r' can lead to the lowest vg of 0.0085c at 1550nm with wide bandwidth of 202GHz for zero dispersion.
Keywords: 42.70.Qs      78.20.Bh     
Received: 21 August 2008      Published: 27 November 2008
PACS:  42.70.Qs (Photonic bandgap materials)  
  78.20.Bh (Theory, models, and numerical simulation)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2008/V25/I12/04311
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
MAO Xiao-Yu
ZHANG Geng-Yan
HUANG Yi-Dong
ZHANG Wei
PENG Jiang-De
[1] Wang J F, Huang Y D et al 2005 Chin. Phys. Lett. 22 12
[2] Miao B L, Chen C H, Shi S Y et al 2004 Photon.Technol. Lett. 16 11
[3] Yamada K, Notomi M, Shinya A et al 2002 Proc. SPIE 4870 324
[4] Notomi M, Yamada K, Shinya A et al 2001 Phys. Rev.Lett. 87 25
[5] Petrov A Yu and Eich M 2004 Appl. Phys. Lett. 85 21
[6] Mori D and Baba T 2004 Appl. Phys. Lett. 85 1101
[7] Mori D and Baba T 2005 Opt. Express, 13 23
[8] Yanik M F and Fan S H 2004 Phys. Rev. Lett. 928
[9] Lin C X, Zhang W, Huang Y D et al 2007 Appl. Phys.Lett. 90 031109
[10] Qiu M et al 2002 Appl. Phys. Lett. 81 1163
[11] Adibi A, Lee R K, Xu Y et al 2000 Electron. Lett. 36 1376
Related articles from Frontiers Journals
[1] ZHOU Hai-Chun, YANG Guang, WANG Kai, LONG Hua, LU Pei-Xiang. Coupled Optical Tamm States in a Planar Dielectric Mirror Structure Containing a Thin Metal Film[J]. Chin. Phys. Lett., 2012, 29(6): 4311-4313
[2] ZHOU Yan, YIN Li-Qun. Self-Detection of Leaking Pipes by One-Dimensional Photonic Crystals[J]. Chin. Phys. Lett., 2012, 29(6): 4311-4313
[3] ZHANG Li-Wei, ZHANG Ye-Wen, HE Li, WANG You-Zhen. Experimental Study of Tunneling modes in Photonic Crystal Heterostructure Consisting of Single-Negative Materials[J]. Chin. Phys. Lett., 2012, 29(6): 4311-4313
[4] HAN Ying,**,HOU Lan-Tian,ZHOU Gui-Yao,YUAN Jin-Hui,XIA Chang-Ming,WANG Wei,WANG Chao,HOU Zhi-Yun,. Flat Supercontinuum Generation within the Telecommunication Wave Bands in a Photonic Crystal Fiber with Central Holes[J]. Chin. Phys. Lett., 2012, 29(5): 4311-4313
[5] LI Heng,SHENG Chuan-Xiang**,CHEN Qian. Optical Bistability in Ag/Dielectric Multilayers[J]. Chin. Phys. Lett., 2012, 29(5): 4311-4313
[6] DU Ming-Di,SUN Jun-Qiang**,CHENG Wen-Long. THz Output Improvement in a Photomixer with a Resonant-Cavity-Enhanced Structure[J]. Chin. Phys. Lett., 2012, 29(4): 4311-4313
[7] YAO Jie,YE Yong-Hong**. Super-Resolution Imaging by using a Metallic Rod Array in the Near Infrared Region[J]. Chin. Phys. Lett., 2012, 29(4): 4311-4313
[8] LI Cheng-Guo, GAO Yong-Hao, XU Xing-Sheng. Angular Tolerance Enhancement in Guided-Mode Resonance Filters with a Photonic Crystal Slab[J]. Chin. Phys. Lett., 2012, 29(3): 4311-4313
[9] WU Hong, JIANG Li-Yong, JIA Wei, LI Xiang-Yin. Polarization Beam Splitter Based on an Annular Photonic Crystal of Negative Refraction[J]. Chin. Phys. Lett., 2012, 29(3): 4311-4313
[10] WU Ya-Min, CHEN Guo-Qing, MA Chao-Qun, XUE Si-Zhong, ZHU Zhuo-Wei. Optical Bistability in Graded Core-Shell Granular Composites[J]. Chin. Phys. Lett., 2012, 29(3): 4311-4313
[11] MA Jian-Yong, FAN Yong-Tao. Guided Mode Resonance Transmission Filters Working at the Intersection Region of the First and Second Leaky Modes[J]. Chin. Phys. Lett., 2012, 29(2): 4311-4313
[12] FU Xiao-Jian, XU Yuan-Da, ZHOU Ji. Abnormal Dielectric Response in an Optical Range Based on Electronic Transition in Rare-Earth-Ion-Doped Crystals[J]. Chin. Phys. Lett., 2012, 29(2): 4311-4313
[13] HAN Ying, **, HOU Lan-Tian, YUAN Jin-Hui, XIA Chang-Ming, ZHOU Gui-Yao,. Ultraviolet Continuum Generation in the Fundamental Mode of Photonic Crystal Fibers[J]. Chin. Phys. Lett., 2012, 29(1): 4311-4313
[14] CHEN Xi-Yao**, LIN Gui-Min, LI Jun-Jun, XU Xiao-Fu, JIANG Jun-Zhen, QIANG Ze-Xuan, QIU Yi-Shen, LI Hui. Polarization Beam Splitter Based on a Self-Collimation Michelson Interferometer in a Silicon Photonic Crystal[J]. Chin. Phys. Lett., 2012, 29(1): 4311-4313
[15] ZHANG Jin-Su, ZHONG Hai-Yang, SUN Jia-Shi, CHENG Li-Hong, LI Xiang-Ping, CHEN Bao-Jiu**. Reddish Orange Long-Lasting Phosphorescence in KY3F10:Sm3+ for X-Ray or Cathode Ray Tubes[J]. Chin. Phys. Lett., 2012, 29(1): 4311-4313
Viewed
Full text


Abstract