Chin. Phys. Lett.  2008, Vol. 25 Issue (12): 4258-4261    DOI:
Original Articles |
Dependence of Arc Plasma Dispersion Capability on its Temperature
CHEN Yun-Yun, SONG Yang, HE An-Zhi, LI Zhen-Hua
Department of Information Physics and Engineering, Nanjing University of Science and Technology, Nanjing 210094
Cite this article:   
CHEN Yun-Yun, SONG Yang, HE An-Zhi et al  2008 Chin. Phys. Lett. 25 4258-4261
Download: PDF(251KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The relationship between the dispersion capability and the temperature of argon arc plasma at 1 atm is deduced in view of the plasma's refractive index equation. The results indicate that argon arc plasma has a normal dispersion and its dispersion capability is nonlinear to the plasma's temperature in a wide range of temperature and wavelength region. According to the results of numerical calculation, the preferred optical methods are believed to be suitable for the diagnosis of argon arc plasma in different temperature regions.

Keywords: 41.90.+e      52.25.Mq      52.35.Hr     
Received: 01 March 2008      Published: 27 November 2008
PACS:  41.90.+e (Other topics in electromagnetism; electron and ion optics)  
  52.25.Mq (Dielectric properties)  
  52.35.Hr (Electromagnetic waves (e.g., electron-cyclotron, Whistler, Bernstein, upper hybrid, lower hybrid))  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2008/V25/I12/04258
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
CHEN Yun-Yun
SONG Yang
HE An-Zhi
LI Zhen-Hua
[1] Li J Y, Xue H T, Li H and Song Y L 2007 Chin. J.Mech. Engin. 20 44
[2] Zhong W, Yang J Y, Duan X K, Zhu W, Fan X A and Bao S Q2007 Mater. Rev. 21 14 (in Chinese)
[3] Harris D H, Janowiecki R J, Semler C E, Willson M C andCheng J T 1970 J. Appl. Phys. 41 1348
[4] Alpher R A and White D R 1959 Phys. Fluids 2 153
[5] Jeffries R A 1970 Phys. Fluids 13 210
[6] Radley Jr R J 1975 Phys. Fluids 18 2
[7] Faris G W 2000 Opt. Express 7 447
[8] Xu J L and Jin S X 1981 Plasma Physics (Beijing:Atomic Energy Publishing Company Press) (in Chinese)
[9] Xue H T, Li H and Li J Y 2004 Chin. J. Mech. Engin.40 49 (in Chinese)
[10] Allen C W 1963 Astrophysical Quantities (London:Athlone) chap 5 p 92
[11] Faris G W and Bergstr\"om H 1991 Appl. Opt. 30 2212
[12] Saha M N 1920 Philos. Mag. 238 472
[13] Jin Y M and Fan Y S 1983 The Physical Basis of LowTemperature Plasma (Beijing: Tsinghua University Press) chap 4 p 58(in Chinese)
Related articles from Frontiers Journals
[1] XIAO Fu-Liang, **, HE Zhao-Guo ZHANG Sai, SU Zhen-Peng, CHEN Liang-Xu, . Diffusion Simulation of Outer Radiation Belt Electron Dynamics Induced by Superluminous L-O Mode Waves[J]. Chin. Phys. Lett., 2011, 28(3): 4258-4261
[2] GUO Jun, **, YU Bin, GUO Guang-Hai, ZHAO Bo . Electron Whistler Mode Waves Associated with Collisionless Magnetic Reconnection[J]. Chin. Phys. Lett., 2011, 28(2): 4258-4261
[3] LIANG Hui-Min**, WANG Jing-Quan . Simulation of Interference Nanolithography of Second-Exciting Surface-Plasmon Polartions for Metal Nanograting Fabrication[J]. Chin. Phys. Lett., 2011, 28(1): 4258-4261
[4] LIANG Hui-Min, WANG Jing-Quan, FAN Feng, QIN Ai-Li, ZHANG Chun-Yuan, CHENG Hui. Enhanced Surface-Plasmon-Polariton Interference for Nanolithography by a Micro-Cylinder-Lens Array[J]. Chin. Phys. Lett., 2010, 27(9): 4258-4261
[5] ZHOU Qing-Hua, HE Yi-Hua, HE Zhao-Guo, YANG Chang. Propagation Characteristics of Whistler-Mode Chorus during Geomagnetic Activities[J]. Chin. Phys. Lett., 2010, 27(5): 4258-4261
[6] ZHANG Sai, XIAO Fu-Liang** . Chorus-Driven Outer Radiation Belt Electron Dynamics at Different L-Shells[J]. Chin. Phys. Lett., 2010, 27(12): 4258-4261
[7] WANG Jing-Quan, LIANG Hui-Min, SHI Sha, DU Jing-Lei. Theoretical Analysis of Interference Nanolithography of Surface Plasmon Polaritons without a Match Layer[J]. Chin. Phys. Lett., 2009, 26(8): 4258-4261
[8] XIAO Fu-Liang, TIAN Tian, CHEN Liang-Xu. Bounce-averaged Pitch-angle Diffusion by Electromagnetic Ion Cyclotron Waves in Multi-ion Plasmas[J]. Chin. Phys. Lett., 2009, 26(5): 4258-4261
[9] SU Zhen-Peng, ZHENG Hui-Nan, XIONG Ming. Dynamic Evolution of Outer Radiation Belt Electrons due to Whistler-Mode Chorus[J]. Chin. Phys. Lett., 2009, 26(3): 4258-4261
[10] LAN Chao-Hui, HU Xi-Wei, LIU Ming-Hai. Numerical Study of Spontaneous Outspread of Large-Scale Surface-Wave Plasma Excited by Slot-Antenna Array[J]. Chin. Phys. Lett., 2009, 26(3): 4258-4261
[11] ZHOU Qing-Hua, JIANG Bin, SHI Xiang-Hua, LI Jun-Qiu. Whistler-Mode Waves Growth by a Generalized Relativistic Kappa-Type Distribution[J]. Chin. Phys. Lett., 2009, 26(2): 4258-4261
[12] SU Zhen-Peng, ZHENG Hui-Nan. Resonant Scattering of Relativistic Outer Zone Electrons by Plasmaspheric Plume Electromagnetic Ion Cyclotron Waves[J]. Chin. Phys. Lett., 2009, 26(12): 4258-4261
[13] XIAO Fu-Liang, TIAN Tian, CHEN Liang-Xu, SU Zhen-Peng, ZHENG Hui-Nan. Evolution of Ring Current Protons Induced by Electromagnetic Ion Cyclotron Waves[J]. Chin. Phys. Lett., 2009, 26(11): 4258-4261
[14] LAN Chao-Hui, HU Xi-Wei, JIANG Zhong-He, LIU Ming-Hai. Effect of Air Gap on Uniformity of Large-Scale Surface-Wave Plasma[J]. Chin. Phys. Lett., 2009, 26(11): 4258-4261
[15] HE Hui-Yong, CHEN Liang-Xu, LI Jiang-Fan. Characteristics of Wave--Particle Interaction in a Hydrogen Plasma[J]. Chin. Phys. Lett., 2008, 25(9): 4258-4261
Viewed
Full text


Abstract