Chin. Phys. Lett.  2008, Vol. 25 Issue (12): 4219-4222    DOI:
Original Articles |
Analytical Method to Evaluate Hugoniot of Metallic Materials with Different Initial Temperatures
WANG Qing-Song, LAN Qiang, HU Jian-Bo, WU Jing, DAI Cheng-Da
Laboratory for Shock Wave and Detonation Physics Research, Institute of Fluid Physics, Chinese Academy of Engineering Physics, Mianyang 621900
Cite this article:   
WANG Qing-Song, LAN Qiang, HU Jian-Bo et al  2008 Chin. Phys. Lett. 25 4219-4222
Download: PDF(367KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

An analytical method is proposed to evaluate the Hugoniot parameters of preheated metallic materials by relating to its principal Hugoniot. Modelling calculations for 1100 Al, Cu and Ta show that the preheating lowers to a certain extent the shock impedance and the degree of lowering the shock impedance increases with increasing preheating temperature. The Hugoniots of 6061-T6 Al and TC4 preheated flyers at known preheating temperatures are evaluated, and are utilized to calculate the particle velocity and shock pressure using the impedance-match method based on the measured shock wave velocity and impact velocity reported in Z pinch-driven and three-stage gun-driven Hugoniot experiments. The presented method allows a reasonable evaluation for Hugoniot of the preheated metallic flyers.

Keywords: 05.70.Ce      41.75.Lx      44.05.+e     
Received: 13 June 2008      Published: 27 November 2008
PACS:  05.70.Ce (Thermodynamic functions and equations of state)  
  41.75.Lx (Other advanced accelerator concepts)  
  44.05.+e (Analytical and numerical techniques)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2008/V25/I12/04219
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
WANG Qing-Song
LAN Qiang
HU Jian-Bo
WU Jing
DAI Cheng-Da
[1] Mitchell C et al 1974 J. Appl. Phys. 45 3856
[2] Gathers G R 1994 Selected Topics in Shock WavePhysics and Equation of State Modeling (Singapore: WorldScientific) p 1
[3] Duffy T S and Ahrens T J 1994 J. Appl Phys. 76835
[4] Winfree N A et al 2002 Shock Compression of CondensedMatter-2001 ed Furnish M D, Thadhani N N and Horie Y (New York:AIP) p 75
[5] Knudson M D et al 2003 J. Appl. Phys. 94 4420
[6] Batani D et al 2000 Phys. Rev. B 61 9287
[7] Trunin R F 2004 High-Pressure Shock Compression ofSolids VII: Shock Waves and Extreme States of Matter edFortov V E, Al'tshuler L V Trunin R F and Funtikov A I (New York:Speinger) p 77
[8] McQueen R G et al 1970 High-Velocity ImpactPhenomena ed Kinslow R (New York: Academic) p 293
[9] Mitchell A C and Nellis W J 1981 J. Appl. Phys. 52 3363
[10] Marsh S P 1980 LASL Shock Hugoniot Data (Berkeley:University of California Press) p 5
[11] TouloukianY S, Kirby R K, Taylor R E and Lee T Y R 1970 Thermal Expansion-Metallic Solids: Thermophysical Properties ofMatters (New York: Plenum) vol 12
[12] Meyers M A 1994 Dynamic Behavior of Materials (NewYork: Plenum) 133
[13] Reinhart W D et al 2001 J. Impact Engin. 26625
Related articles from Frontiers Journals
[1] BAI Zhan-Wu. Role of the Bath Spectrum in the Specific Heat Anomalies of a Damped Oscillator[J]. Chin. Phys. Lett., 2012, 29(6): 4219-4222
[2] LI Zhi-Gang**, TANG Da-Wei, LI Tie, DU Jing-Long, . A Hemispherical-Involute Cavity Receiver for Stirling Engine Powered by a Xenon Arc Solar Simulator[J]. Chin. Phys. Lett., 2011, 28(5): 4219-4222
[3] BEZ�, R C�, CEK Nalan**, &Scedil, AH�, N &Scedil, ENCAN Arzu . Thermal Efficiency for Each Zone of a Solar Pond[J]. Chin. Phys. Lett., 2011, 28(10): 4219-4222
[4] R. C. Aziz, I. Hashim** . Liquid Film on Unsteady Stretching Sheet with General Surface Temperature and Viscous Dissipation[J]. Chin. Phys. Lett., 2010, 27(11): 4219-4222
[5] HU Jia-Wen, YU Yang-Xin. Prediction and Refinement of High-Order Virial Coefficients for a Hard-Sphere System[J]. Chin. Phys. Lett., 2009, 26(8): 4219-4222
[6] TAN Shuai-Xia, LU Xiao-Ying, LI Wen, ZHAO Ning, ZHANG Xiao-Li, XU Jian. A Thermodynamic Analysis of the Validity of Wenzel and Cassie's Equations[J]. Chin. Phys. Lett., 2009, 26(8): 4219-4222
[7] CAI Jun, HUAI Xiu-Lan. A Lattice Boltzmann Model for Fluid-Solid Coupling Heat Transfer in Fractal Porous Media[J]. Chin. Phys. Lett., 2009, 26(6): 4219-4222
[8] SU Qian-Min, , MA Yu-Gang, TIAN Wen-Dong, FANG De-Qing, CAI Xiang-Zhou, WANG Kun. Density and Symmetric Potential Dependences of Isoscaling Behaviour in the Lattice Gas Model[J]. Chin. Phys. Lett., 2008, 25(6): 4219-4222
[9] LUO Xiao-Ping, CUI Z. F.. Modelling of Phase Change Heat Transfer System for Micro-channel and Chaos Simulation[J]. Chin. Phys. Lett., 2008, 25(6): 4219-4222
[10] YIN Tie-Nan, HUAI Xiu-Lan. Fourier and Wavelet Transform Analysis of Pressure Signals during Explosive Boiling[J]. Chin. Phys. Lett., 2008, 25(3): 4219-4222
[11] A. K. Alomari, M. S. M. Noorani, R. Nazar. Solutions of Heat-Like and Wave-Like Equations with Variable Coefficients by Means of the Homotopy Analysis Method[J]. Chin. Phys. Lett., 2008, 25(2): 4219-4222
[12] WANG Chun-Yang, BAO Jing-Dong. The Third Law of Quantum Thermodynamics in the Presence of Anomalous Couplings[J]. Chin. Phys. Lett., 2008, 25(2): 4219-4222
[13] Arafa H. Aly. Peltier Coefficient and Photon-Assisted Tunnelling in Quantum Point Contact[J]. Chin. Phys. Lett., 2008, 25(12): 4219-4222
[14] KANG Jing, QU Chang-Zheng,. Linearization of Systems of Nonlinear Diffusion Equations[J]. Chin. Phys. Lett., 2007, 24(9): 4219-4222
[15] Seripah Awang Kechil, Ishak Hashim, Sim Siaw Jiet. Approximate Analytical Solutions for a Class of Laminar Boundary-Layer Equations[J]. Chin. Phys. Lett., 2007, 24(7): 4219-4222
Viewed
Full text


Abstract