Chin. Phys. Lett.  2008, Vol. 25 Issue (12): 4211-4214    DOI:
Original Articles |
Two-Mode Wave Solutions to the Degasperis--Procesi Equation
ZHANG Zheng-Di, BI Qin-Sheng
Faculty of Science, Jiangsu University, Zhenjiang 212013
Cite this article:   
ZHANG Zheng-Di, BI Qin-Sheng 2008 Chin. Phys. Lett. 25 4211-4214
Download: PDF(212KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract By introducing a new type of solutions, called the multiple-mode wave solutions which can be expressed in nonlinear superposition of single-mode waves with different speeds, we investigate the two-mode wave solutions in Degasperis--Procesi equation and two cases are derived. The explicit expressions for the two-mode waves as well as the existence conditions are presented. It is shown that the two-mode waves may be the nonlinear combinations of many types of single-mode waves, such as periodic waves, solitons, compactons, etc., and more complicated multiple-mode waves can be obtained if higher order or more single-mode waves are taken into consideration. It is pointed out that the two-mode wave solutions can be employed to display the typical mechanism of the interactions between different single-mode waves.
Keywords: 05.45.Yv      05.45.-a     
Received: 08 May 2008      Published: 27 November 2008
PACS:  05.45.Yv (Solitons)  
  05.45.-a (Nonlinear dynamics and chaos)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2008/V25/I12/04211
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHANG Zheng-Di
BI Qin-Sheng
[1] Wadati M Ichikawa Y H and Shimizu T 1980 Prog. Theor.Phys. 64 1959
[2]Liu Y and Li Z 2003 Chin. Phys. Lett. 20 317
[3]Benjamin T B, Bona J L et al 1972 Trans. Roy. Soc.London A 272 47
[4]Wadati M 1973 J. Phys. Soc. Jpn. 34 1289
[5]Malfliet W 1992 J. Phys. 60 650
[6]El-Wakil S A and Abdou M A 2007 Chaos, SolitonsFractals 31 840
[7]Tarmo S 2004 Phys. Lett. A 332 74
[8] Hoseini S M and Marchant T R 2006 Wave Motion 44 92
[9]Degasperis M P 1999 (Singapore: World Scientific) p 23
[10]Zong X J and Zhao Y 2007 Nonlinear Analysis 673167
[11]Joachim E and Yin Z 2007 Phys. Lett. A 368 69
[12]El-Wakil S A and Abdou M A 2007 Chaos, SolitonsFractals 31 1256
[13]Wazwaz A M 2007 Appl. Math. Comput. 186 130
[14]Zhang Z D and Bi Q S 2005 Chaos, Solitons Fractals 24 631
[15]Bi Q S 2007 Phys. Lett. A 360 574
[16]Bi Q S 2007 Chaos, Solitons Fractals 31 417
[17]Stefan C, Mancas S and Choudhury R 2007 Math. Comput.Simulat. 74 266
[18]Alagesan T, Chung Y and Nakkeeran K 2004 Chaos,Solitons Fractals 21 63
Related articles from Frontiers Journals
[1] E. M. E. Zayed, S. A. Hoda Ibrahim. Exact Solutions of Nonlinear Evolution Equations in Mathematical Physics Using the Modified Simple Equation Method[J]. Chin. Phys. Lett., 2012, 29(6): 4211-4214
[2] K. Fakhar, A. H. Kara. The Reduction of Chazy Classes and Other Third-Order Differential Equations Related to Boundary Layer Flow Models[J]. Chin. Phys. Lett., 2012, 29(6): 4211-4214
[3] ZHAI Liang-Jun, ZHENG Yu-Jun, DING Shi-Liang. Chaotic Dynamics of Triatomic Normal Mode Molecules[J]. Chin. Phys. Lett., 2012, 29(6): 4211-4214
[4] HE Jing-Song, WANG You-Ying, LI Lin-Jing. Non-Rational Rogue Waves Induced by Inhomogeneity[J]. Chin. Phys. Lett., 2012, 29(6): 4211-4214
[5] YANG Zheng-Ping, ZHONG Wei-Ping. Self-Trapping of Three-Dimensional Spatiotemporal Solitary Waves in Self-Focusing Kerr Media[J]. Chin. Phys. Lett., 2012, 29(6): 4211-4214
[6] NIU Yao-Bin, WANG Zhong-Wei, DONG Si-Wei. Modified Homotopy Perturbation Method for Certain Strongly Nonlinear Oscillators[J]. Chin. Phys. Lett., 2012, 29(6): 4211-4214
[7] LIU Yan, LIU Li-Guang, WANG Hang. Study on Congestion and Bursting in Small-World Networks with Time Delay from the Viewpoint of Nonlinear Dynamics[J]. Chin. Phys. Lett., 2012, 29(6): 4211-4214
[8] Paulo C. Rech. Dynamics in the Parameter Space of a Neuron Model[J]. Chin. Phys. Lett., 2012, 29(6): 4211-4214
[9] YAN Yan-Zong, WANG Cang-Long, SHAO Zhi-Gang, YANG Lei. Amplitude Oscillations of the Resonant Phenomena in a Frenkel–Kontorova Model with an Incommensurate Structure[J]. Chin. Phys. Lett., 2012, 29(6): 4211-4214
[10] CUI Kai. New Wronskian Form of the N-Soliton Solution to a (2+1)-Dimensional Breaking Soliton Equation[J]. Chin. Phys. Lett., 2012, 29(6): 4211-4214
[11] S. Hussain. The Effect of Spectral Index Parameter κ on Obliquely Propagating Solitary Wave Structures in Magneto-Rotating Plasmas[J]. Chin. Phys. Lett., 2012, 29(6): 4211-4214
[12] YAN Jia-Ren**,ZHOU Jie,AO Sheng-Mei. The Dynamics of a Bright–Bright Vector Soliton in Bose–Einstein Condensation[J]. Chin. Phys. Lett., 2012, 29(5): 4211-4214
[13] LI Jian-Ping,YU Lian-Chun,YU Mei-Chen,CHEN Yong**. Zero-Lag Synchronization in Spatiotemporal Chaotic Systems with Long Range Delay Couplings[J]. Chin. Phys. Lett., 2012, 29(5): 4211-4214
[14] JIANG Jun**. An Effective Numerical Procedure to Determine Saddle-Type Unstable Invariant Limit Sets in Nonlinear Systems[J]. Chin. Phys. Lett., 2012, 29(5): 4211-4214
[15] FANG Ci-Jun,LIU Xian-Bin**. Theoretical Analysis on the Vibrational Resonance in Two Coupled Overdamped Anharmonic Oscillators[J]. Chin. Phys. Lett., 2012, 29(5): 4211-4214
Viewed
Full text


Abstract