Chin. Phys. Lett.  2008, Vol. 25 Issue (12): 4192-4194    DOI:
Original Articles |
A Bilinear Bäcklund Transformation and Explicit Solutions for a (3+1)-Dimensional Soliton Equation
WU Jian-Ping
Institute of Electronic Technology, the PLA Information Engineering University, Zhengzhou 450004
Cite this article:   
WU Jian-Ping 2008 Chin. Phys. Lett. 25 4192-4194
Download: PDF(164KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Considering the bilinear form of a (3+1)-dimensional soliton equation, we obtain a bilinear Bäcklund transformation for the equation. As an application,
soliton solution and stationary rational solution for the (3+1)-dimensional soliton equation are presented.
Keywords: 02.30.Jr      05.45.Yv     
Received: 09 July 2008      Published: 27 November 2008
PACS:  02.30.Jr (Partial differential equations)  
  05.45.Yv (Solitons)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2008/V25/I12/04192
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
WU Jian-Ping
[1] Ablowitz M J and Segur H 1981 Solitons and theInverse Scattering Transform (Philadelphia, PA: SIAM)
[2] Novikov S P, Manakov S V , Pitaevskii L P and Zakharov VE 1984 Theory of Solitons, the Inverse Scattering Methods (NewYork: Consultants Bureau)
[3] Matveev V B and Salle M A 1991 DarbouxTransformations and Solitons (Berlin: Springer)
[4] Gu C H 1995 Soliton Theory and its Application(Berlin: Springer)
[5] Hirota R 1971 Phys. Rev. Lett. {\bf 27 1192
[6] Hirota R and Satsuma J 1977 Prog. Theor. Phys. {\bf57 797
[7] Geng X G 2003 J. Phys. A: Math. Gen. {\bf 36 2289
[8] Geng X G and Ma Y L 2007 Phys. Lett. A {\bf 369 285
[9] Hirota R 2004 The Direct Method in Soliton Theory(Cambridge: Cambridge University Press)
Related articles from Frontiers Journals
[1] E. M. E. Zayed, S. A. Hoda Ibrahim. Exact Solutions of Nonlinear Evolution Equations in Mathematical Physics Using the Modified Simple Equation Method[J]. Chin. Phys. Lett., 2012, 29(6): 4192-4194
[2] WU Yong-Qi. Exact Solutions to a Toda-Like Lattice Equation in 2+1 Dimensions[J]. Chin. Phys. Lett., 2012, 29(6): 4192-4194
[3] HE Jing-Song, WANG You-Ying, LI Lin-Jing. Non-Rational Rogue Waves Induced by Inhomogeneity[J]. Chin. Phys. Lett., 2012, 29(6): 4192-4194
[4] YANG Zheng-Ping, ZHONG Wei-Ping. Self-Trapping of Three-Dimensional Spatiotemporal Solitary Waves in Self-Focusing Kerr Media[J]. Chin. Phys. Lett., 2012, 29(6): 4192-4194
[5] CUI Kai. New Wronskian Form of the N-Soliton Solution to a (2+1)-Dimensional Breaking Soliton Equation[J]. Chin. Phys. Lett., 2012, 29(6): 4192-4194
[6] S. Hussain. The Effect of Spectral Index Parameter κ on Obliquely Propagating Solitary Wave Structures in Magneto-Rotating Plasmas[J]. Chin. Phys. Lett., 2012, 29(6): 4192-4194
[7] CAO Ce-Wen**,ZHANG Guang-Yao. Lax Pairs for Discrete Integrable Equations via Darboux Transformations[J]. Chin. Phys. Lett., 2012, 29(5): 4192-4194
[8] YAN Jia-Ren**,ZHOU Jie,AO Sheng-Mei. The Dynamics of a Bright–Bright Vector Soliton in Bose–Einstein Condensation[J]. Chin. Phys. Lett., 2012, 29(5): 4192-4194
[9] DAI Zheng-De**, WU Feng-Xia, LIU Jun and MU Gui. New Mechanical Feature of Two-Solitary Wave to the KdV Equation[J]. Chin. Phys. Lett., 2012, 29(4): 4192-4194
[10] Mohammad Najafi**,Maliheh Najafi,M. T. Darvishi. New Exact Solutions to the (2+1)-Dimensional Ablowitz–Kaup–Newell–Segur Equation: Modification of the Extended Homoclinic Test Approach[J]. Chin. Phys. Lett., 2012, 29(4): 4192-4194
[11] S. Karimi Vanani, F. Soleymani. Application of the Homotopy Perturbation Method to the Burgers Equation with Delay[J]. Chin. Phys. Lett., 2012, 29(3): 4192-4194
[12] Saliou Youssoufa, Victor K. Kuetche, Timoleon C. Kofane. Generation of a New Coupled Ultra-Short Pulse System from a Group Theoretical Viewpoint: the Cartan Ehresman Connection[J]. Chin. Phys. Lett., 2012, 29(2): 4192-4194
[13] Hermann T. Tchokouansi, Victor K. Kuetche, Abbagari Souleymanou, Thomas B. Bouetou, Timoleon C. Kofane. Generating a New Higher-Dimensional Ultra-Short Pulse System: Lie-Algebra Valued Connection and Hidden Structural Symmetries[J]. Chin. Phys. Lett., 2012, 29(2): 4192-4194
[14] LIU Ping**, FU Pei-Kai. Note on the Lax Pair of a Coupled Hybrid System[J]. Chin. Phys. Lett., 2012, 29(1): 4192-4194
[15] LOU Yan, ZHU Jun-Yi** . Coupled Nonlinear Schrödinger Equations and the Miura Transformation[J]. Chin. Phys. Lett., 2011, 28(9): 4192-4194
Viewed
Full text


Abstract