Chin. Phys. Lett.  2008, Vol. 25 Issue (12): 4189-4191    DOI:
Original Articles |
Periodic Homoclinic Wave of (1+1)-Dimensional Long--Short Wave Equation
LI Dong-Long1, DAI Zheng-De1,2,GUO Yan-Feng1
1Department of Information and Computing Science, Guangxi University of Technology, Liuzhou 5450062 School of Mathematics and Physics, Yunnan University, Kunming 650091
Cite this article:   
LI Dong-Long, DAI Zheng-De, GUO Yan-Feng 2008 Chin. Phys. Lett. 25 4189-4191
Download: PDF(806KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The exact periodic homoclinic wave of (1+1)D long--short wave equation is obtained using an extended homoclinic test technique. This result shows complexity and variety of dynamical behaviour for a (1+1)-dimensional long--short wave equation.
Keywords: 02.30.Jr      05.45.Yv      47.11.+j     
Received: 22 April 2008      Published: 27 November 2008
PACS:  02.30.Jr (Partial differential equations)  
  05.45.Yv (Solitons)  
  47.11.+j  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2008/V25/I12/04189
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LI Dong-Long
DAI Zheng-De
GUO Yan-Feng
[1] Guckenheimer J and Holmes P 1990 Applied MathematicalSciences (New York: Springer)
[2] Wiggins S 1988 Global Bifurcation andChaos-analytical Methods (New York: Springer)
[3] Li Y 1999 J Nonlin. Sci. 9 363
[4] Bishop A R, Fesser K, Lomdahl P S, Kerr W C, Willams M Sand Tullinger S E 1983 Phys. Rev. Lett. 50 1095
[5] McLaughlin D W and Venice S J 1996 Proc. Sympos.Appl. Math. 54 281
[6] Shatah J and Zeng C 2000 Comm. Pure Appl. Math.53 283
[7] Rothos VM. 1999 J. Phys. A: Math. Gen. 32 6409
[8] McLaughlin D W and Overman II E A 1995 Surveysin Applied Mathematics (New York: Plenum)
[9] Li Y, McLaughlin DW, Shatah J and Wiggins S 1996 {\itComm. Pure Appl.Math. 49 1175
[10] Calini A, Ercolani N M, McLaughlin D W and Schober C M1996 Physica D 89 227
[11] Rothos V M, Antonopoulos C and Drossos L 2002 Int.J. Bifur. Chaos Appl. Sci. Eng. 12 1743
[12] Hirota R 1971 Phys. Rev. Lett. 27 1192
[13] Miurs M R 1978 Backlund Transformation (Berlin:Springer)
[14] Weiss J, Tabor M and Garnevale G 1983 J. Math.Phys. 24 522
[15] Yan C 1996 Phys. Lett. A 224 77
[16] Wang M L 1996 Phys. Lett. A 213 279
[17] El-Shabed M 2005 Int. J. Nonlinear Sci. Numer.Simul. 6 163
[18] He J H 1999 Int. J. Nonlin. Mech. 34 699
[19] Abassy T A, El-Tawil M A and Saleh H K 2004 Int. J.Nonlin. Sci. Numer. Simul. 5 327
[20] Zayad E M E, Zedan H A and Gepreel K A 2004 Int. J.Nonlin. Sci. Numer. Simul. 5 221
[21] HumJ Q 2005 Chaos Solitons Fract. 23 391
[22] Liu S K, Fu Z T and Zhao Q 2001 Phys. Lett. A {\bf289 69
[23] Liu J B and Yang K Q 2004 Chaos Solitons Fract.22 111
[24]Shek E C M and Chow K W 2008 Chaos Solitons Fract.36 296
[25] Ablowitz M J and Clarkson P A 1991 Solitons,Nonlinear Evolution Equations and Inverse Scattering (Cambridge:Cambridge University Press)
[26] Dai Z D, Huang J, Jiang M R and Wang S H 2005 ChaosSolitons Fract. 26 1189
[27] Dai Z D, Jiang M R, Dai Q Y and Li S L 2006 Chin.Phys. Lett. 23 1065
[28] Dai Z D, Huang J and Jiang M R 2006 Phys. Lett. A352 411
[29] Dai Z D, Li S L, Li D L and Zhu A J 2007 Chin. Phys.Lett. 24 1429
[30] Dai Z D, Zhu A J, Li S L and Li D L 2007 Chin. J.Phys. 45 62
[31] Dai Z D, Liu Z J and Li D L 2008 Chin. Phys. Lett.25(5) 1531
[32] Dai Z D, Li Z T, Liu Z J and Li D L 2008 Phys. Lett. A 372 3010
[33] Djordjevic V D and Redekopp L G 1977 J. FluidMech. 79 703
Related articles from Frontiers Journals
[1] E. M. E. Zayed, S. A. Hoda Ibrahim. Exact Solutions of Nonlinear Evolution Equations in Mathematical Physics Using the Modified Simple Equation Method[J]. Chin. Phys. Lett., 2012, 29(6): 4189-4191
[2] WU Yong-Qi. Exact Solutions to a Toda-Like Lattice Equation in 2+1 Dimensions[J]. Chin. Phys. Lett., 2012, 29(6): 4189-4191
[3] HE Jing-Song, WANG You-Ying, LI Lin-Jing. Non-Rational Rogue Waves Induced by Inhomogeneity[J]. Chin. Phys. Lett., 2012, 29(6): 4189-4191
[4] YANG Zheng-Ping, ZHONG Wei-Ping. Self-Trapping of Three-Dimensional Spatiotemporal Solitary Waves in Self-Focusing Kerr Media[J]. Chin. Phys. Lett., 2012, 29(6): 4189-4191
[5] CUI Kai. New Wronskian Form of the N-Soliton Solution to a (2+1)-Dimensional Breaking Soliton Equation[J]. Chin. Phys. Lett., 2012, 29(6): 4189-4191
[6] S. Hussain. The Effect of Spectral Index Parameter κ on Obliquely Propagating Solitary Wave Structures in Magneto-Rotating Plasmas[J]. Chin. Phys. Lett., 2012, 29(6): 4189-4191
[7] CAO Ce-Wen**,ZHANG Guang-Yao. Lax Pairs for Discrete Integrable Equations via Darboux Transformations[J]. Chin. Phys. Lett., 2012, 29(5): 4189-4191
[8] YAN Jia-Ren**,ZHOU Jie,AO Sheng-Mei. The Dynamics of a Bright–Bright Vector Soliton in Bose–Einstein Condensation[J]. Chin. Phys. Lett., 2012, 29(5): 4189-4191
[9] DAI Zheng-De**, WU Feng-Xia, LIU Jun and MU Gui. New Mechanical Feature of Two-Solitary Wave to the KdV Equation[J]. Chin. Phys. Lett., 2012, 29(4): 4189-4191
[10] Mohammad Najafi**,Maliheh Najafi,M. T. Darvishi. New Exact Solutions to the (2+1)-Dimensional Ablowitz–Kaup–Newell–Segur Equation: Modification of the Extended Homoclinic Test Approach[J]. Chin. Phys. Lett., 2012, 29(4): 4189-4191
[11] SHI Lei**,XIONG Wei,GAO Shu-Sheng. The Effect of Gas Leaks on Underground Gas Storage Performance During Development and Operation[J]. Chin. Phys. Lett., 2012, 29(4): 4189-4191
[12] S. Karimi Vanani, F. Soleymani. Application of the Homotopy Perturbation Method to the Burgers Equation with Delay[J]. Chin. Phys. Lett., 2012, 29(3): 4189-4191
[13] Saliou Youssoufa, Victor K. Kuetche, Timoleon C. Kofane. Generation of a New Coupled Ultra-Short Pulse System from a Group Theoretical Viewpoint: the Cartan Ehresman Connection[J]. Chin. Phys. Lett., 2012, 29(2): 4189-4191
[14] Hermann T. Tchokouansi, Victor K. Kuetche, Abbagari Souleymanou, Thomas B. Bouetou, Timoleon C. Kofane. Generating a New Higher-Dimensional Ultra-Short Pulse System: Lie-Algebra Valued Connection and Hidden Structural Symmetries[J]. Chin. Phys. Lett., 2012, 29(2): 4189-4191
[15] LIU Ping**, FU Pei-Kai. Note on the Lax Pair of a Coupled Hybrid System[J]. Chin. Phys. Lett., 2012, 29(1): 4189-4191
Viewed
Full text


Abstract