Chin. Phys. Lett.  2008, Vol. 25 Issue (10): 3822-3825    DOI:
Original Articles |
Cascading Failures of Complex Networks Based on Two-Step Degree
WU Zhi-Hai, FANG Hua-Jing
Department of Control Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074
Cite this article:   
WU Zhi-Hai, FANG Hua-Jing 2008 Chin. Phys. Lett. 25 3822-3825
Download: PDF(341KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

We propose a new concept, two-step degree. Defining it as the capacity of a node of complex networks, we establish a novel capacity--load model of cascading failures of complex networks where the capacity of nodes decreases during the process of cascading failures. For scale-free networks, we find that the average two-step degree increases with the increase of the heterogeneity of the degree distribution, showing that the average two-step degree can be used for measuring the heterogeneity of the degree distribution of complex networks. In addition, under the condition that the average degree of a node is given, we can design a scale-free network with the optimal robustness to random failures by maximizing the average two-step degree.

Keywords: 89.75.Hc      89.75.Fb     
Received: 07 March 2008      Published: 26 September 2008
PACS:  89.75.Hc (Networks and genealogical trees)  
  89.75.Fb (Structures and organization in complex systems)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2008/V25/I10/03822
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
WU Zhi-Hai
FANG Hua-Jing
[1] Albert R, Jeong H and Barab\'{asi A L 2000 Nature 406 378
[2] Cohen R, Erez K, ben-Avraham D and Havlin S 2000 Phys. Rev. Lett. 85 4626
[3] Cohen R, Erez K, ben-Avraham D and Havlin S 2001 Phys. Rev. Lett. 86 3682
[4] Callaway D S, Newman M E J, Strogatz S H and Watts D J2000 Phys. Rev. Lett. 85 5468
[5] Gallos L K, Cohen R, Argyrak is P and Havlin S 2005 Phys. Rev. Lett. 94 188701
[6] Shargel B, Sayama H, Epstein I R and Bar-Yam Y 2003 Phys. Rev. Lett. 90 068701
[7] Paul G, Tanizaw A T, Havlin S and Stanley H E 2004 Eur. Phys. J. B 38 187
[8] Valente A X C N, Sarkar A and Stone H A 2004 Phys.Rev. Lett. 92 118702
[9] Tanizawa T, Paul G, Cohen R, Havlin S and Stanley H E 2005 Phys. Rev. E 71 047101
[10] Wang B, Tang H W, Guo C H and Xiu Z L 2006 PhysicaA 363 591
[11] Moreno Y, Gomez J B and Pacheco A. F 2002 Europhys.Lett. 58 630
[12] Motter A E, Nishikawa T and Lai Y C 2002 Phys. Rev.E 66 065102(R)
[13] Newnan M E J, Strogatz S H and Watts D J 2001 Phys.Rev. E 64 026118
[14] Home P and Kim B J 2002 Phys. Rev. E 65056109
[15] Crucitti P,Latora V and Marchiori m 2004 Phys. Rev.E 69 045104
[16] Barab\'{asi A L and Albert R 1999 Science 286509
Related articles from Frontiers Journals
[1] QI Kai,TANG Ming**,CUI Ai-Xiang,FU Yan. The Slow Dynamics of the Zero-Range Process in the Framework of the Traps Model[J]. Chin. Phys. Lett., 2012, 29(5): 3822-3825
[2] ZHAO Qing-Bai,ZHANG Xiao-Fei,SUI Dan-Ni,ZHOU Zhi-Jin,CHEN Qi-Cai,TANG Yi-Yuan,**. The Efficiency of a Small-World Functional Brain Network[J]. Chin. Phys. Lett., 2012, 29(4): 3822-3825
[3] CHEN Duan-Bing**,GAO Hui. An Improved Adaptive model for Information Recommending and Spreading[J]. Chin. Phys. Lett., 2012, 29(4): 3822-3825
[4] LIU Xu,XIE Zheng,YI Dong-Yun**. Community Detection by Neighborhood Similarity[J]. Chin. Phys. Lett., 2012, 29(4): 3822-3825
[5] LI Ping, ZHANG Jie, XU Xiao-Ke, SMALL Michael. Dynamical Influence of Nodes Revisited: A Markov Chain Analysis of Epidemic Process on Networks[J]. Chin. Phys. Lett., 2012, 29(4): 3822-3825
[6] XIE Zheng, YI Dong-Yun, OUYANG Zhen-Zheng, LI Dong. Hyperedge Communities and Modularity Reveal Structure for Documents[J]. Chin. Phys. Lett., 2012, 29(3): 3822-3825
[7] TIAN Liang, LIN Min. Relaxation of Evolutionary Dynamics on the Bethe Lattice[J]. Chin. Phys. Lett., 2012, 29(3): 3822-3825
[8] REN Xue-Zao, YANG Zi-Mo, WANG Bing-Hong, ZHOU Tao. Mandelbrot Law of Evolving Networks[J]. Chin. Phys. Lett., 2012, 29(3): 3822-3825
[9] ZHU Zi-Qi, JIN Xiao-Ling, HUANG Zhi-Long. Search for Directed Networks by Different Random Walk Strategies[J]. Chin. Phys. Lett., 2012, 29(3): 3822-3825
[10] SUN Mei, CHEN Ying, CAO Long, WANG Xiao-Fang. Adaptive Third-Order Leader-Following Consensus of Nonlinear Multi-agent Systems with Perturbations[J]. Chin. Phys. Lett., 2012, 29(2): 3822-3825
[11] CHENG Hong-Yan, YANG Jun-Zhong** . Organization of the Strategy Pattern in Evolutionary Prisoner's Dilemma Game on Scale-Free Networks[J]. Chin. Phys. Lett., 2011, 28(6): 3822-3825
[12] SUN Wei-Gang, , CAO Jian-Ting, WANG Ru-Bin** . Approach of Complex Networks for the Determination of Brain Death[J]. Chin. Phys. Lett., 2011, 28(6): 3822-3825
[13] LI Jun, WU Jun**, LI Yong, DENG Hong-Zhong, TAN Yue-Jin** . Optimal Attack Strategy in Random Scale-Free Networks Based on Incomplete Information[J]. Chin. Phys. Lett., 2011, 28(6): 3822-3825
[14] SHANG Yi-Lun . Local Natural Connectivity in Complex Networks[J]. Chin. Phys. Lett., 2011, 28(6): 3822-3825
[15] JIANG Hui-Jun, WU Hao, HOU Zhong-Huai** . Explosive Synchronization and Emergence of Assortativity on Adaptive Networks[J]. Chin. Phys. Lett., 2011, 28(5): 3822-3825
Viewed
Full text


Abstract