Chin. Phys. Lett.  2008, Vol. 25 Issue (10): 3818-3821    DOI:
Original Articles |
Electric Field-Induced Fluid Velocity Field Distribution in DNA Solution
ZHANG Ling-Yun, WANG Peng-Ye
Laboratory of Soft Matter Physics, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Beijing 100190
Cite this article:   
ZHANG Ling-Yun, WANG Peng-Ye 2008 Chin. Phys. Lett. 25 3818-3821
Download: PDF(318KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

We present an analytical solution for fluid velocity field distribution of polyelectrolyte DNA. Both the electric field force and the viscous force in the DNA solution are considered under a suitable boundary condition. The solution of electric potential is analytically obtained by using the linearized Poisson--Boltzmann equation. The fluid velocity along the electric field is dependent on the cylindrical radius and concentration. It is shown that the electric field-induced fluid velocity will be increased with the increasing cylindrical radius, whose distribution also varies with the concentration

Keywords: 87.10.-e      82.35.Rs      87.15.Ad     
Received: 13 May 2008      Published: 26 September 2008
PACS:  87.10.-e (General theory and mathematical aspects)  
  82.35.Rs (Polyelectrolytes)  
  87.15.ad (Analytical theories)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2008/V25/I10/03818
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHANG Ling-Yun
WANG Peng-Ye
[1] De Gennes P G 1979 Scaling Concepts in PolymerPhysics (Ithaca, NY: Cornell University Press)
[2] Dickinson E and L. Eriksson 1991 Adv. Coll. InterfaceSci. 34 1
[3] Cabane B, Wong K, Way T K, Lafuma F and Duplessix R 1988 Coll. Pol. Sci. 266 101
[4] Careri G, Giansanti A, Rupley J A and Bulter P D 2001 Nature 409 747
[5] Zwolak M and Ventra M D 2005 Nano Lett. 5 421
[6] Ohshiro T and Umezawa Y 2006 Proc. Natl. Acad. Sci. 193 10
[7] Keyser U F, Koeleman B N, Dorp S V, Krapf D, Smeets R M M,Lemay S G, Dekker N H and Dekker C 2006 Nat. Phys. 2 473
[8] Stein D, Li J and Golovchenko J A 2002 Phys. Rev.Lett. 89 276106
[9] Muthukumar M 2001 Phys. Rev. Lett. 86 3188
[10] Kasianowicz J, Brabdin E, Branton D and Deamer D 1996 Proc. Natl. Acad. Sci. U. S. A. 93 13770
[11] Sung W and Park P J 1996 Phys. Rev. Lett. 77783
[12] Zwolak M and Ventra M D 2008 Rev. Mod. Phys. 80 141
[13] Lubensky D and Nelson D 1999 Biophys. J. 771824
[14] Rice S A and Nagasawa M 1977 PolyelectrolyteSolution (Orlando: Academic)
[15] Sharp K A and Honig B 1990 Annu. Rev. Biophys.Chem. 19 301
[16] Tanford C 1961 Physical Chemistry of Macromolecules(New York: John Wiley and Sons)
[17] Bucher M and Porter T L 1986 J. Phys. Chem. 90 3406
[18] Landau L D and Lifshitz E M 1987 Fluid Mechanics(Oxford: Pergamon)
Related articles from Frontiers Journals
[1] LIAN Zeng-Ju** . Interaction of a Spherical Colloid and a Porous Membrane in a Bulk Electrolyte[J]. Chin. Phys. Lett., 2011, 28(5): 3818-3821
[2] PAN Bing-Yi, ZHANG Ling-Yun, DOU Shuo-Xing, WANG Peng-Ye. Effect of Laser Field and Mechanical Force on Deoxyribonucleic Acid Melting[J]. Chin. Phys. Lett., 2010, 27(7): 3818-3821
[3] WU Ke-Fei, WAN Rong-Zheng, WANG Chun-Lei, REN Xiu-Ping, FANG Hai-Ping,. A Quasi-One-Dimensional Model for a Chain of Water Molecules on the Nanometer Scale[J]. Chin. Phys. Lett., 2010, 27(3): 3818-3821
[4] DING Hui, LUO Liao-Fu. Kinetic Model of the Lysogeny/Lysis Switch of Phage λ[J]. Chin. Phys. Lett., 2009, 26(9): 3818-3821
[5] GUO Ping, LI Xin-Xia, XIONG Ping, HE Ji-Shan. Local Magnetic Nanoparticle Delivery in Microvasculature[J]. Chin. Phys. Lett., 2009, 26(1): 3818-3821
Viewed
Full text


Abstract