Chin. Phys. Lett.  2008, Vol. 25 Issue (10): 3808-3810    DOI:
Original Articles |
Undercooling and Unidirectional Solidification of CuNi Alloy Melts
WANG Qiang, MA Ming-Zhen, JING Qin, LI Gong, QI Li, ZHANG Xin-Yu, WANG Wen-Kui, LIU Ri-Ping
State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004
Cite this article:   
WANG Qiang, MA Ming-Zhen, JING Qin et al  2008 Chin. Phys. Lett. 25 3808-3810
Download: PDF(809KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Cylinder-shaped Cu80Ni20 alloy melt is undercooled and solidified by the combination of the electromagnetic levitation technique and the flux treatment method. Nearly constant temperature gradient of 8-10K/cm is realized for the cylindrical melts with different undercooling levels at the bottom ends. The experimental results reveal that with the increase of the undercooling of the melts from 35 to 220K, the microstructures undergo transition from coarse dendrites to granular grains, unidirectional dendrites, and finally to equiaxed grains.

Keywords: 81.30.Fb      81.10.Dn      81.10.Aj     
Received: 22 April 2008      Published: 26 September 2008
PACS:  81.30.Fb (Solidification)  
  81.10.Dn (Growth from solutions)  
  81.10.Aj (Theory and models of crystal growth; physics and chemistry of crystal growth, crystal morphology, and orientation)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2008/V25/I10/03808
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
WANG Qiang
MA Ming-Zhen
JING Qin
LI Gong
QI Li
ZHANG Xin-Yu
WANG Wen-Kui
LIU Ri-Ping
[1] Fu H Z, Wei B and Guo J J 2003 Mater. Eng. Sci. 5 1
[2] Cao C D, Lu X Y and Wei B 1998 Acta Metal. Sin. 34 489
[3] Liu R P 2003 Chin. Phys. Lett. 20 1622
[4] Kolbe M et al. 2004 Mat. Sci. Eng. A 375-377520
[5] Cao C D, Xie W J and Wei B 2000 Mat. Sci. Eng. A 283 86
[6] Ge L L et al 2004 Mat. Sci. Eng. A 385 128
[7] Norman A F et al 1998 Acta Mater. 46 3355
[8] Cao C D et al. 2002 Mat. Sci. Eng. A 325 503
[9] Xie F and Fu H 1999 Mat. Sci. Tech. 7 44
[10] Zheng H X and Guo X F 2001 Hot Working Tech. 6 6
[11] Guo X F and Xing J D 2001 Hot Working Tech. 55
[12] Guo X F et al 2000 Chin. J. Non. Metals 10630
[13] Li J F et al 1998 J. Cryst. Growth 192 462
[14] Li J F, Zhou Y H and Yang G C 1999 J. Cryst. Growth 206 141
[15] Li J F, Zhou Y H and Yang G C 2000 Mat. Sci. Eng. A 277 161
[16] Li J F, Yang G C and Zhou Y H 1998 Mater Res. Bull. 33 141
[17] G\"{artner F et al 1997 Acta Materialia 4551
[18] Guo X F et al 2000 Acta Mater. Sin. 36 351
Related articles from Frontiers Journals
[1] JI Xiao-Rui, YANG Xiao-Hong. Removing Impurity of cBN Crystal Prepared at High Pressure and High Temperature[J]. Chin. Phys. Lett., 2012, 29(3): 3808-3810
[2] LI Zhe-Yang, **, HAN Ping, LI Yun, NI Wei-Jiang, BAO Hui-Qiang, LI Yu-Zhu . Epitaxial Growth of 4H-SiC on 4° Off-Axis Substrate for Power Devices[J]. Chin. Phys. Lett., 2011, 28(9): 3808-3810
[3] LU Yun-Bin, LIAO Shu-Zhi**, PENG Hao-Jun, ZHANG Chun, ZHOU Hui-Ying, XIE Hao-Wen, OUYANG Yi-Fang, ZHANG Bang-Wei, . Size Model of Critical Temperature for Grain Growth in Nano V and Au[J]. Chin. Phys. Lett., 2011, 28(8): 3808-3810
[4] YAN Na, DAI Fu-Ping, WANG Wei-Li, WEI Bing-Bo** . Crystal Growth in Al72.9Ge27.1 Alloy Melt under Acoustic Levitation Conditions[J]. Chin. Phys. Lett., 2011, 28(7): 3808-3810
[5] GAO Zhao-Shun, ZHANG Xian-Ping, WANG Dong-Liang, QI Yan-Peng, WANG Lei, CHENG Jun-Sheng, WANG Qiu-Liang, MA Yan-Wei**, AWAJI Satoshi, WATANABE Kazuo . Fabrication and Properties of Aligned Sr0.6K0.4Fe2As2 Superconductors by High Magnetic Field Processing[J]. Chin. Phys. Lett., 2011, 28(6): 3808-3810
[6] LI Shang-Sheng, LI Xiao-Lei, MA Hong-An, SU Tai-Chao, XIAO Hong-Yu, HUANG Guo-Feng, LI Yong, ZHANG Yi-Shun, JIA Xiao-Peng, ** . Reaction Mechanism of Al and N in Diamond Growth from a FeNiCo-C System[J]. Chin. Phys. Lett., 2011, 28(6): 3808-3810
[7] GUO Xiao-Song, BAO Zhong, ZHANG Shan-Shan, XIE Er-Qing** . A Novel Model of the H Radical in Hot-Filament Chemical Vapor Deposition[J]. Chin. Phys. Lett., 2011, 28(2): 3808-3810
[8] LI Yang, QIU Sheng-Bao, SHAO Yang, YAO Ke-Fu** . Effects of the Cooling Rate on the Plasticity of Pd40.5Ni40.5P19 Bulk Metallic Glasses[J]. Chin. Phys. Lett., 2011, 28(11): 3808-3810
[9] ZHAO Jing, MIAO Hong**, DUAN Li, KANG Qi, HE Ling-Hui . In Situ Observation of NaCl Crystal Growth by the Vapor Diffusion Method with a Mach–Zehnder Interferometer[J]. Chin. Phys. Lett., 2011, 28(10): 3808-3810
[10] CHENG Jin, , ZOU Xiao-Ping, SONG Wei-Li, CAO Mao-Sheng, SU Yi, YANG Gang-Qiang, , Lü Xue-Ming, ZHANG Fu-Xue,. Shape-Controlled Synthesis and Related Growth Mechanism of Pb(OH)2 Nanorods by Solution-Phase Reaction[J]. Chin. Phys. Lett., 2010, 27(5): 3808-3810
[11] HOU Zhao-Yang, LIU Li-Xia, LIU Rang-Su, TIAN Ze-An. Tracing Nucleation and Growth on Atomic Level in Amorphous Sodium by Molecular Dynamics Simulation[J]. Chin. Phys. Lett., 2010, 27(3): 3808-3810
[12] ZHANG Xiao-Mei, WANG Wei-Li, RUAN Ying, WEI Bing-Bo. Metastable Phase Separation and Concomitant Solute Redistribution of Liquid Fe-Cu-Sn Ternary Alloy[J]. Chin. Phys. Lett., 2010, 27(2): 3808-3810
[13] DING Hong-Yu, LI Yang, YAO Ke-Fu. Preparation of a Pd-Cu-Si Bulk Metallic Glass with a Diameter up to 11mm[J]. Chin. Phys. Lett., 2010, 27(12): 3808-3810
[14] FU Xin, JIANG Jun, LIU Chao, YU Zhi-Yang, Steffan LEA, YUAN Jun,. Re-entrant-Groove-Assisted VLS Growth of Boron Carbide Five-Fold Twinned Nanowires[J]. Chin. Phys. Lett., 2009, 26(8): 3808-3810
[15] ZHUO Long-Chao, PANG Shu-Jie, WANG Hui, ZHANG Tao. Ductile Bulk Aluminum-Based Alloy with Good Glass-Forming Ability and High Strength[J]. Chin. Phys. Lett., 2009, 26(6): 3808-3810
Viewed
Full text


Abstract