Chin. Phys. Lett.  2008, Vol. 25 Issue (10): 3739-3741    DOI:
Original Articles |
Spin Polarization and Andreev Conductance through a Diluted Magnetic Semiconductor Quantum Wire with Spin--Orbit Interaction
LI Yu-Xian
College of Physics, Hebei Normal University, Shijiazhuang 050016Hebei Advanced Thin Films Laboratory, Shijiazhuang 050016
Cite this article:   
LI Yu-Xian 2008 Chin. Phys. Lett. 25 3739-3741
Download: PDF(259KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Spin-dependent Andreev reflection and spin polarization through a diluted magnetic semiconductor quantum wire coupled to normal metallic and superconductor electrodes are investigated using scattering theory. When the spin--orbit coupling is considered, more Andreev conductance steps appear at the same Fermi energy. Magnetic semiconductor quantum wire separates the spin-up and spin-down electrons. The Fermi energy, at which different-spin-state electrons begin to separate, becomes lower due to the effect of the spin--orbit interaction. The spin filter effect can be measured more easily by investigating the Andreev conductance than by investigating the normal conductance.
Keywords: 72.25.-b      73.23.-b      74.78.Na     
Received: 08 May 2008      Published: 26 September 2008
PACS:  72.25.-b (Spin polarized transport)  
  73.23.-b (Electronic transport in mesoscopic systems)  
  74.78.Na (Mesoscopic and nanoscale systems)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2008/V25/I10/03739
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LI Yu-Xian
[1] Kane B E 1998 Nature 393 133
[2]Zhang X W, Fan W J, Li S S, and Xia J B 2007 Phys.Rev. B 75 205331
[3] Li S S, Chang K, Xia J B and Hirose K 2003 Phys.Rev. B 68 245306
[4] Chang K, Li S S and Xia J B 2004 Phys. Rev. B 69 235203
[5] Ji Y et al 2001 Phys. Rev. Lett. 86 5585
[6] Blonder G E, Tinkham M and Klapwijk T M 1982 Phys.Rev. B 25 4515
[7] Beenakker C W J 1997 Rev. Mod. Phys. 69 731
[8] Cao X, Shi Y, Song X, Zhou S and Chen H 2004 Phys.Rev. B 70 235341
[9] Li Y X, Choi H Y, Lee H W and Liu J J 2007 J. Appl.Phys. 101 103918
[10] Beenakker C W J 1992 Phys. Rev. B 46 12841
[11] Kang K 1998 Phys. Rev. B 58 9641
[12] Bychkov Y A and Rashba E I 1984 Sov. Phys. JETP 39 78
[13]Pershin Y V, Nesteroff J A and Privman V 2004 Phys.Rev. B 69 121306(R)
[14] Li Y X, Guo Y and Li B Z 2005 Phys. Rev. B 72075321
[15] B\"uttiker M 1990 Phys. Rev. B 41 R7906
[16] Datta S 1995 Electronic Transport in MesoscopicSystems (Cambridge: Cambridge University Press)
Related articles from Frontiers Journals
[1] PENG Juan**,LI Shu-Shen. The Electronic Structure of Coupled Semiconductor Quantum Dots Arranged as a Graphene Hexagonal Lattice under a Magnetic Field[J]. Chin. Phys. Lett., 2012, 29(4): 3739-3741
[2] ZHAO Peng**,LIU De-Sheng,. Electronic Transport Properties of an Anthraquinone-Based Molecular Switch with Carbon Nanotube Electrodes[J]. Chin. Phys. Lett., 2012, 29(4): 3739-3741
[3] FANG Dong-Kai, WU Shao-Quan, ZOU Cheng-Yi, ZHAO Guo-Ping. Effect of Electronic Correlations on Magnetotransport through a Parallel Double Quantum Dot[J]. Chin. Phys. Lett., 2012, 29(3): 3739-3741
[4] XIA Cai-Juan**, LIU De-Sheng, ZHANG Ying-Tang . Electronic Transport Properties of a Naphthopyran-Based Optical Molecular Switch: an ab initio Study[J]. Chin. Phys. Lett., 2011, 28(9): 3739-3741
[5] ZHAO Peng**, LIU De-Sheng, ZHANG Ying, WANG Pei-Ji, ZHANG Zhong . Rectifying Properties of a Nitrogen/Boron-Doped Capped-Carbon-Nanotube-Based Molecular Junction[J]. Chin. Phys. Lett., 2011, 28(4): 3739-3741
[6] ZHENG Ji-Ming, HUANG Yao-Qing**, REN Zhao-Yu, YANG Hui-Jing, CAO Mao-Sheng** . Electronic Non-Resonant Tunneling through Diaminoacenes: A First-Principles Investigation[J]. Chin. Phys. Lett., 2011, 28(2): 3739-3741
[7] ZHOU Li-Ling . Unique Properties of Heat Generation in Nanoscale Systems[J]. Chin. Phys. Lett., 2011, 28(12): 3739-3741
[8] CAO Wen-Qiang, , LU Ming-Ming, WEN Bo, CHEN Yuan-Lu, LI Hong-Bo, YUAN Jie**, CAO Mao-Sheng** . MWCNTs/SiO2 Composite System: Carrier Transmission, Twin-Percolation and Dielectric Properties[J]. Chin. Phys. Lett., 2011, 28(10): 3739-3741
[9] Attia A. Awadalla, Adel H. Phillips** . Thermal Shot Noise through Boundary Roughness of Carbon Nanotube Quantum Dots[J]. Chin. Phys. Lett., 2011, 28(1): 3739-3741
[10] ZHANG Qing-Yun, WANG Bai-Geng, SHEN Rui, XING Ding-Yu. Generation and Quantum Interference of Entangled Electron-Hole Pairs in a Hanbury Brown and Twiss Interferometer[J]. Chin. Phys. Lett., 2010, 27(9): 3739-3741
[11] CHEN Zhi-Dong, ZHANG Jin-Yu, YU Zhi-Ping. Numerical Analysis of Alternating-Current Small-Signal Response in Graphene Nanoribbons[J]. Chin. Phys. Lett., 2010, 27(8): 3739-3741
[12] WANG Jing, LIANG Yun-Ye, CHEN Hao, WANG Peng, R. Note, H. Mizuseki, Y. Kawazoe. Self-Consistent Study of Conjugated Aromatic Molecular Transistors[J]. Chin. Phys. Lett., 2010, 27(6): 3739-3741
[13] LIN Liang-Zhong, ZHU Rui, DENG Wen-Ji. Shot Noise in Aharonov-Casher Rings[J]. Chin. Phys. Lett., 2010, 27(6): 3739-3741
[14] LI Jin-Liang, LI Yu-Xian. Spin Current Through Triple Quantum Dot in the Presence of Rashba Spin-Orbit Interaction[J]. Chin. Phys. Lett., 2010, 27(5): 3739-3741
[15] KONG Xiao-Lan, XIONG Yong-Jian. Resonance Transport of Graphene Nanoribbon T-Shaped Junctions[J]. Chin. Phys. Lett., 2010, 27(4): 3739-3741
Viewed
Full text


Abstract