Original Articles |
|
|
|
|
Monolithic Integration of Sampled Grating DBR with Electroabsorption Modulator by Combining Selective-Area-Growth MOCVD and Quantum-Well Intermixing |
LIU Hong-Bo, ZHAO Ling-Juan, PAN Jiao-Qing, ZHU Hong-Liang, ZHOU Fan, WANG Bao-Jun, WANG Wei |
Key Laboratory of Semiconductor Materials, Institute of Semiconductors, Chinese Academy of Sciences, PO Box 912, Beijing 100083 |
|
Cite this article: |
LIU Hong-Bo, ZHAO Ling-Juan, PAN Jiao-Qing et al 2008 Chin. Phys. Lett. 25 3670-3672 |
|
|
Abstract We present the monolithic integration of a sampled-grating distributed Bragg reflector (SG-DBR) laser with a quantum-well electroabsorption modulator (QW-EAM) by combining ultra-low-pressure (55mbar) selective-area-growth (SAG) metal-organic chemical vapour deposition (MOCVD) and quantum-well intermixing (QWI) for the first time. The QW-EAM and the gain section can be grown simultaneously by using SAG MOCVD technology. Meanwhile, the QWI technology offers an abrupt band-gap change between two functional sections, which reduces internal absorption loss. The experimental results show that the threshold current Ith=62 mA, and output power reaches 3.6mW. The wavelength tuning range covers 30nm, and all the corresponding side mode suppression ratios are over 30dB. The extinction ratios at available wavelength channels can reach more than 14dB with bias of -5 V
|
Keywords:
42.55.Px
81.15.Gh
81.07.St
|
|
Received: 10 June 2008
Published: 26 September 2008
|
|
PACS: |
42.55.Px
|
(Semiconductor lasers; laser diodes)
|
|
81.15.Gh
|
(Chemical vapor deposition (including plasma-enhanced CVD, MOCVD, ALD, etc.))
|
|
81.07.St
|
(Quantum wells)
|
|
|
|
|
[1] Jayaraman V, Chuang Z M and Coldren L A 1993 IEEE J.Quantum Electron. 29 1824 [2] Mason B et al 1999 IEEE Photon. Technol. Lett. 11 638 [3] Kan Q, et al 2005 Chin. J. Semicond. 26 853 [4] Skogen E J, et al 2003 IEEE J. Sel. Top. QuantumElectron. 9 1183 [5] Raring J W, et al 2005 IEEE J. Lightwave Technol. 23 80 [6] Chin M K 1995 Proc. Inst. Electron. Eng.Optoelectron. 142 109 [7] Sakata Y, et al 1999 IEEE J. Quantum Electron. 35 368 [8] Sudo S, et al 2000 J. Cryst. Growth 221 189 [9] Skogen E J et al 2002 IEEE Photon. Technol. Lett. 14 1243 [10] Raring J W et al 2004 IEEE Photon. Technol. Lett. 16 1613 [11] Yashiki K et al 2000 IEEE Photon. Technol. Lett. 14 137 [12] Johnson J E et al 2001 IEEE J. Sel. Top. QuantumElectron. 7 168 [13] Mason B et al 1998 IEEE Photon. Technol. Lett. 10 1211 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|