Original Articles |
|
|
|
|
Three-Dimensional Angular Momentum Projected Relativistic Point-Coupling Approach for Low-Lying Excited States in 24Mg |
Yao Jiang-Ming1,2, Meng Jie1,3,4, D. Pena Arteaga2, P. Ring2 |
1School of Physics and State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 1008712Physik-Department der Technischen Universität München, D-85748 Garching, Germany3Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 1001904Center of Theoretical Nuclear Physics, National Laboratory of Heavy Ion Accelerator, Lanzhou 730000 |
|
Cite this article: |
Yao Jiang-Ming, Meng Jie, D. Pena Arteaga et al 2008 Chin. Phys. Lett. 25 3609-3612 |
|
|
Abstract A full three-dimensional angular momentum projection on top of a triaxial relativistic mean-field calculation is implemented for the first time. The underlying Lagrangian is a point coupling model and pairing correlations are taken into account by a monopole force. This method is applied for the low-lying excited states in 24Mg. Good agreement with the experimental data is found for the ground state properties. A minimum in the potential energy surface for the 2+1 state, with β≈0.55, γ≈10°, is used as the basis to investigate the rotational energy spectrum as well as the corresponding B(E2) transition probabilities as compared to the available data
|
Keywords:
21.10.Dr
21.10.Re
21.60.Jz
21.30.Fe
|
|
Received: 17 August 2008
Published: 26 September 2008
|
|
PACS: |
21.10.Dr
|
(Binding energies and masses)
|
|
21.10.Re
|
(Collective levels)
|
|
21.60.Jz
|
(Nuclear Density Functional Theory and extensions (includes Hartree-Fock and random-phase approximations))
|
|
21.30.Fe
|
(Forces in hadronic systems and effective interactions)
|
|
|
|
|
[1] Parikh J 1968 Phys. Lett. B 26 607 [2] Lombard R et al 1970 J. de Phys. Supp. C 2 90 [3] Endt P M, Van Der Leun C 1978 Nucl. Phys. A 310 1 [4] Meyer M A et al 1972 Nucl. Phys. A 185 625 [5] Branford D et al 1975 Nucl. Phys. A 241 349 [6] Ring P and Schuck P 1980 The Nuclear Many-BodyProblem, Springer, Heidelberg [7] Grammaticos B 1975 Nucl. Phys. A 252 90 [8] Girod M and Grammaticos B 1983 Phys. Rev. C 272317 [9] Bonche P et al 1987 Nucl. Phys. A 467 115 [10] Oi M 2005 Phys. Rev. C 72 057304 [11] Koepf W and Ring P 1988 Phys. Lett. B 212 397 [12] Hirata D et al 1996 Nucl. Phys. A 609 131 [13] Valor A et al 2000 Nucl. Phys. A 671 145 [14] Rodriguez-Guzman R R et al 2002 Nucl. Phys. A 709 201 [15] Niksic T et al 2006 Phys. Rev. C 73 034308 Niksic T et al 2006 Phys. Rev. C 74 064309 [16] Hara K et al 1982 Nucl. Phys. A 385 14 [17] Burzynski K and Dobaczewski J 1995 Phys. Rev. C 51 1825 [18] Enami K et al 1999 Phys. Rev. C 59 135 [19] Hayashi A et al 1984 Phys. Rev. Lett. 53337 [20] Baye D and Heenen P H 1984 Phys. Rev. C 291056 [21] Zdunczuk H et al 2007 Phys. Rev. C 76 044304 [22] Bender M et al 2008 nucl-th/arXiv:0805.4383 [23] Serot B D and Walecka J D 1986 Adv. Nucl. Phys. 16 1 Serot B D and Walecka J D 1997 Int. J. Mod. Phys. E 6 515 [24] Ring P 1996 Prog. Part. Nucl. Phys. 37 193 [25] Vretenar D et al 2005 Phys. Rep. 409 101 [26] Meng J et al 2006 Prog. Part. Nucl. Phys. 57470 [27] B\"{urvenich T et al 2002 Phys. Rev. C 65044308 [28] Bender M et al 2000 Eur. Phys. J. A 8 59 [29] Onishi N and Yoshida S 1966 Nucl. Phys. 80367 [30] Balian R and Brezin E 1969 Nuovo Cimento 6437 [31] Neergard K, W\"{ust E 1983 Nucl. Phys. A 402311 [32] Yao J M et al 2008 in prepare [33] Audi G et al 2003 Nucl. Phys. A 729 337 [34] Fewell M P et al 1979 Nucl. Phys. A 319 214 [25] Keinonen J et al 1989 Nucl. Phys. A 493 124 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|