Chin. Phys. Lett.  2008, Vol. 25 Issue (10): 3570-3573    DOI:
Original Articles |
Reissner--Nordström-de--Sitter-type Solution by a Gauge Theory of Gravity
V. Enache1, Camelia Popa1, V. Paun2, M. Agop 3,4
1Department of Theoretical Physics, Faculty of Physics, Al.I.Cuza University, Blvd. Carol No.1, 700506, Iasi, Romania2Department of Physics, Faculty of Applied Sciences, Politehnica University of Bucharest, I, 313 Splaiul Independentei Street, 060042, Bucharest, Romania3Department of Physics, Gh. Asachi Technical University, Blvd. Mangeron, 700029, Iasi, Romania4Department of Physics, University of Athens, Athens 15771, Greece
Cite this article:   
V. Enache, Camelia Popa, V. Paun et al  2008 Chin. Phys. Lett. 25 3570-3573
Download: PDF(169KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We use the theory based on a gravitational gauge group (Wu's model) to obtain a spherical symmetric solution of the field equations for the gravitational potential on a Minkowski spacetime. The gauge group, the gauge covariant derivative, the strength tensor of the gauge field, the gauge invariant Lagrangean with the cosmological constant, the field equations of the gauge potentials with a gravitational energy--momentum tensor as well as with a tensor of the field of a point like source are determined. Finally, a Reissner--Nordström--de Sitter-type metric on the gauge group space is obtained.
Keywords: 04.60.-m      04.20.Cv      11.15.-g      11.10.Gh     
Received: 16 April 2008      Published: 26 September 2008
PACS:  04.60.-m (Quantum gravity)  
  04.20.Cv (Fundamental problems and general formalism)  
  11.15.-g  
  11.10.Gh (Renormalization)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2008/V25/I10/03570
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
V. Enache
Camelia Popa
V. Paun
M. Agop
[1] Cheng T P and Li L F 1984 Gauge Theory of ElementaryParticle Physics (Oxford: Clarendon) p 230
[2] Utiyama R 1956 Phys. Rev. 101 1597
[3] Sciama D W 1964 Rev. Mod. Phys. 36 325
[4] Sciama D W 1964 Rev. Mod. Phys. 36 1103
[5] Kibble T W B 1961 J. Math. Phys. 2 212
[6] Blagojevi\'c M 2003 Three Lectures on Poincar\'{eGauge Theory
[arXiv:gr-qc/0302040]
[7] Zet G et al 2003 Int. J. Mod. Phys. C 14 41
[8] Zet G et al 2007 Commun. Theor. Phys. 47 843
[9] Gronwald F 1997 Int. J. Mod. Phys. D 6 263
[10] Wiesendanger C 1996 Class. Quant. Grav. 13681
[arXiv:gr-qc/9505049]
[11] Wu N 2007 Commun. Theor. Phys. 47 503 Wu N 2003 Renormalizable Quantum Gauge GeneralRelativity
[arXiv:gr-qc/0309041]
[12] Wu N 2002 Commun. Theor. Phys 38 151
[arXiv:hep-th/0207254]
[13] Wu N 2004 Commun. Theor. Phys 42 543
[14] Wu N 2003 Commun. Theor. Phys 39 671
[15] Zet G et al 1996 Nuovo Cimento B 111 607
[16] Zet G 1997 Rep. Math. Phys. 39 33
[17] Zet G 2002 Eur. Phys. J. A 15 405
[18] Argyris J et al 2003 Physics of Gravitation and theUniverse (Iasi: Spiru Haret Publishing House)
[19] Ohanian C H and Ruffini R 1994 Gravitation andSpacetime (New York: Wiley)
[20] Kenyon I R 1990 General Relativity (Oxford: OxfordUniversity Press)
[21] Kramer D et al 1980 Exact Solutions of Einstein`sfield equations (Cambridge: Cambridge University Press)
[22] Agop M et al 1999 Class. Quantum Grav. 163367 3380
[23] Agop M et al 2000 Class. Quantum Grav. 173627 3644
[24] Agop M et al 2008 Gen. Rel. Grav. 40 35 55
[25] Agop M et al 2008 Comm. Theor. Phys. (accepted)
Related articles from Frontiers Journals
[1] K. Fakhar, A. H. Kara. The Reduction of Chazy Classes and Other Third-Order Differential Equations Related to Boundary Layer Flow Models[J]. Chin. Phys. Lett., 2012, 29(6): 3570-3573
[2] HUANG Chao-Guang,**,TIAN Yu,WU Xiao-Ning,XU Zhan,ZHOU Bin. New Geometry with All Killing Vectors Spanning the Poincaré Algebra[J]. Chin. Phys. Lett., 2012, 29(4): 3570-3573
[3] ZHANG Bao-Cheng, CAI Qing-Yu, ZHAN Ming-Sheng. Entropy Conservation in the Transition of Schwarzschild-de Sitter Space to de Sitter Space through Tunneling[J]. Chin. Phys. Lett., 2012, 29(2): 3570-3573
[4] MU Ben-Rong, WU Hou-Wen**, YANG Hai-Tang . Generalized Uncertainty Principle in the Presence of Extra Dimensions[J]. Chin. Phys. Lett., 2011, 28(9): 3570-3573
[5] ZHU Yin . Measurement of the Speed of Gravity[J]. Chin. Phys. Lett., 2011, 28(7): 3570-3573
[6] ZOU De-Cheng, YANG Zhan-Ying**, YUE Rui-Hong** . Thermodynamics of Slowly Rotating Charged Black Holes in Anti-de Sitter Einstein–Gauss–Bonnet Gravity[J]. Chin. Phys. Lett., 2011, 28(2): 3570-3573
[7] NI Jun . Unification of General Relativity with Quantum Field Theory[J]. Chin. Phys. Lett., 2011, 28(11): 3570-3573
[8] HE Xiao-Gang, , MA Bo-Qiang,. Black Holes and Photons with Entropic Force[J]. Chin. Phys. Lett., 2010, 27(7): 3570-3573
[9] LIU Liao. Cosmological Gravitational Wave in de Sitter Spacetime[J]. Chin. Phys. Lett., 2010, 27(2): 3570-3573
[10] N. Ibotombi Singh, S. Kiranmla Chanu, S. Surendra Singh. Cosmological Models with Time Dependent G and Λ Coupling Scalars[J]. Chin. Phys. Lett., 2009, 26(6): 3570-3573
[11] GONG Tian-Xi, WANG Yong-Jiu. Orbital Precession Effect in the Reissner-Nordström Field with a Global Monopole[J]. Chin. Phys. Lett., 2009, 26(3): 3570-3573
[12] CHEN Shi-Wu, YANG Shu-Zheng, HAO Xi-Zhun, LIU Xiong-Wei. A Kind of Exact Inflationary Solution in the Chaotic Inflation Model to Non-minimally Coupled Scalar Field[J]. Chin. Phys. Lett., 2008, 25(9): 3570-3573
[13] LIU Liao. Quantum de Sitter Spacetime and Energy Density Contributed from the Cosmological Constant[J]. Chin. Phys. Lett., 2008, 25(8): 3570-3573
[14] LIN Kai, YANG Shu-Zheng. An Inflationary Solution of Scalar Field in Finsler Universe[J]. Chin. Phys. Lett., 2008, 25(7): 3570-3573
[15] Zade S S, Patil K D, Mulkalwar P N. Non-Spherical Gravitational Collapse of Strange Quark Matter[J]. Chin. Phys. Lett., 2008, 25(5): 3570-3573
Viewed
Full text


Abstract